- -

Coordinated gene regulation in the initial phase of salt stress adaptation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Coordinated gene regulation in the initial phase of salt stress adaptation

Show full item record

Vanacloig Pedros, ME.; Bets Plasencia, C.; Pascual-Ahuir Giner, MD.; Proft, MH. (2015). Coordinated gene regulation in the initial phase of salt stress adaptation. Journal of Biological Chemistry. 16(290):10163-10175. doi:10.1074/jbc.M115.637264

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67885

Files in this item

Item Metadata

Title: Coordinated gene regulation in the initial phase of salt stress adaptation
Author: Vanacloig Pedros, Mª ELENA Bets Plasencia, Carolina Pascual-Ahuir Giner, María Desamparados Proft, Markus Hans
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Issued date:
Abstract:
[EN] Stress triggers complex transcriptional responses, which include both gene activation and repression. We used time-resolved reporter assays in living yeast cells to gain insights into the coordination of positive and ...[+]
Subjects: Gene Expression , Glycerol , Hog1 , Osmotic Stress , Saccharomyces cerevisiae , Stress Response , Transcription Regulation , Vacuolar ATPase
Copyrigths: Reserva de todos los derechos
Source:
Journal of Biological Chemistry. (issn: 0021-9258 ) (eissn: 1083-351X )
DOI: 10.1074/jbc.M115.637264
Publisher:
American Society for Biochemistry and Molecular Biology
Publisher version: https://dx.doi.org/10.1074/jbc.M115.637264
Description: This research was originally published in Journal of Biological Chemistry, 2015 - 16 : 10175- 10163 © the American Society for Biochemistry and Molecular Biology
Thanks:
This work was supported by Ministerio de Economia y Competitividad Grant BFU2011-23326 (to M. P.).
Type: Artículo

References

De Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. Nature Reviews Genetics, 12(12), 833-845. doi:10.1038/nrg3055

Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11(12), 4241-4257. doi:10.1091/mbc.11.12.4241

Gasch, A. P., & Werner-Washburne, M. (2002). The genomics of yeast responses to environmental stress and starvation. Functional & Integrative Genomics, 2(4-5), 181-192. doi:10.1007/s10142-002-0058-2 [+]
De Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. Nature Reviews Genetics, 12(12), 833-845. doi:10.1038/nrg3055

Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11(12), 4241-4257. doi:10.1091/mbc.11.12.4241

Gasch, A. P., & Werner-Washburne, M. (2002). The genomics of yeast responses to environmental stress and starvation. Functional & Integrative Genomics, 2(4-5), 181-192. doi:10.1007/s10142-002-0058-2

Saito, H., & Posas, F. (2012). Response to Hyperosmotic Stress. Genetics, 192(2), 289-318. doi:10.1534/genetics.112.140863

De Nadal, E., & Posas, F. (2009). Multilayered control of gene expression by stress-activated protein kinases. The EMBO Journal, 29(1), 4-13. doi:10.1038/emboj.2009.346

Hohmann, S. (2009). Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Letters, 583(24), 4025-4029. doi:10.1016/j.febslet.2009.10.069

Nadal, E. d., Casadome, L., & Posas, F. (2003). Targeting the MEF2-Like Transcription Factor Smp1 by the Stress-Activated Hog1 Mitogen-Activated Protein Kinase. Molecular and Cellular Biology, 23(1), 229-237. doi:10.1128/mcb.23.1.229-237.2003

Martínez-Montañés, F., Pascual-Ahuir, A., & Proft, M. (2010). Toward a Genomic View of the Gene Expression Program Regulated by Osmostress in Yeast. OMICS: A Journal of Integrative Biology, 14(6), 619-627. doi:10.1089/omi.2010.0046

Proft, M. (2001). Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. The EMBO Journal, 20(5), 1123-1133. doi:10.1093/emboj/20.5.1123

Proft, M., & Serrano, R. (1999). Repressors and Upstream Repressing Sequences of the Stress-RegulatedENA1Gene inSaccharomyces cerevisiae: bZIP Protein Sko1p Confers HOG-Dependent Osmotic Regulation. Molecular and Cellular Biology, 19(1), 537-546. doi:10.1128/mcb.19.1.537

Rep, M., Reiser, V., Gartner, U., Thevelein, J. M., Hohmann, S., Ammerer, G., & Ruis, H. (1999). Osmotic Stress-Induced Gene Expression inSaccharomyces cerevisiaeRequires Msn1p and the Novel Nuclear Factor Hot1p. Molecular and Cellular Biology, 19(8), 5474-5485. doi:10.1128/mcb.19.8.5474

Ruiz-Roig, C., Noriega, N., Duch, A., Posas, F., & de Nadal, E. (2012). The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms. Molecular Biology of the Cell, 23(21), 4286-4296. doi:10.1091/mbc.e12-04-0289

Westfall, P. J., Patterson, J. C., Chen, R. E., & Thorner, J. (2008). Stress resistance and signal fidelity independent of nuclear MAPK function. Proceedings of the National Academy of Sciences, 105(34), 12212-12217. doi:10.1073/pnas.0805797105

Ariño, J., Aydar, E., Drulhe, S., Ganser, D., Jorrín, J., Kahm, M., … Sychrová, H. (2014). Systems Biology of Monovalent Cation Homeostasis in Yeast. Advances in Microbial Systems Biology, 1-63. doi:10.1016/b978-0-12-800143-1.00001-4

Hohmann, S. (2002). Osmotic adaptation in yeast-control of the yeast osmolyte system. Molecular Mechanisms of Water Transport Across Biological Membranes, 149-187. doi:10.1016/s0074-7696(02)15008-x

Hohmann, S., Krantz, M., & Nordlander, B. (2007). Yeast Osmoregulation. Osmosensing and Osmosignaling, 29-45. doi:10.1016/s0076-6879(07)28002-4

Albertyn, J., Hohmann, S., Thevelein, J. M., & Prior, B. A. (1994). GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Molecular and Cellular Biology, 14(6), 4135-4144. doi:10.1128/mcb.14.6.4135

Ansell, R., Granath, K., Hohmann, S., Thevelein, J. M., & Adler, L. (1997). The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded byGPD1andGPD2have distinct roles in osmoadaptation and redox regulation. The EMBO Journal, 16(9), 2179-2187. doi:10.1093/emboj/16.9.2179

Norbeck, J., Påhlman, A.-K., Akhtar, N., Blomberg, A., & Adler, L. (1996). Purification and Characterization of Two Isoenzymes of DL-Glycerol-3-phosphatase fromSaccharomyces cerevisiae. Journal of Biological Chemistry, 271(23), 13875-13881. doi:10.1074/jbc.271.23.13875

Klipp, E., Nordlander, B., Krüger, R., Gennemark, P., & Hohmann, S. (2005). Integrative model of the response of yeast to osmotic shock. Nature Biotechnology, 23(8), 975-982. doi:10.1038/nbt1114

Proft, M., & Struhl, K. (2004). MAP Kinase-Mediated Stress Relief that Precedes and Regulates the Timing of Transcriptional Induction. Cell, 118(3), 351-361. doi:10.1016/j.cell.2004.07.016

Li, S. C., Diakov, T. T., Rizzo, J. M., & Kane, P. M. (2011). Vacuolar H + -ATPase Works in Parallel with the HOG Pathway To Adapt Saccharomyces cerevisiae Cells to Osmotic Stress. Eukaryotic Cell, 11(3), 282-291. doi:10.1128/ec.05198-11

Babazadeh, R., Adiels, C. B., Smedh, M., Petelenz-Kurdziel, E., Goksör, M., & Hohmann, S. (2013). Osmostress-Induced Cell Volume Loss Delays Yeast Hog1 Signaling by Limiting Diffusion Processes and by Hog1-Specific Effects. PLoS ONE, 8(11), e80901. doi:10.1371/journal.pone.0080901

Miermont, A., Waharte, F., Hu, S., McClean, M. N., Bottani, S., Leon, S., & Hersen, P. (2013). Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. Proceedings of the National Academy of Sciences, 110(14), 5725-5730. doi:10.1073/pnas.1215367110

Van Wuytswinkel, O., Reiser, V., Siderius, M., Kelders, M. C., Ammerer, G., Ruis, H., & Mager, W. H. (2000). Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase pathway. Molecular Microbiology, 37(2), 382-397. doi:10.1046/j.1365-2958.2000.02002.x

Cook, K. E., & O’Shea, E. K. (2012). Hog1 Controls Global Reallocation of RNA Pol II upon Osmotic Shock in Saccharomyces cerevisiae. G3: Genes|Genomes|Genetics, 2(9), 1129-1136. doi:10.1534/g3.112.003251

Nadal-Ribelles, M., Conde, N., Flores, O., González-Vallinas, J., Eyras, E., Orozco, M., … Posas, F. (2012). Hog1 bypasses stress-mediated down-regulation of transcription by RNA polymerase II redistribution and chromatin remodeling. Genome Biology, 13(11), R106. doi:10.1186/gb-2012-13-11-r106

Dolz-Edo, L., Rienzo, A., Poveda-Huertes, D., Pascual-Ahuir, A., & Proft, M. (2013). Deciphering Dynamic Dose Responses of Natural Promoters and Single cis Elements upon Osmotic and Oxidative Stress in Yeast. Molecular and Cellular Biology, 33(11), 2228-2240. doi:10.1128/mcb.00240-13

Berry, D. B., Guan, Q., Hose, J., Haroon, S., Gebbia, M., Heisler, L. E., … Gasch, A. P. (2011). Multiple Means to the Same End: The Genetic Basis of Acquired Stress Resistance in Yeast. PLoS Genetics, 7(11), e1002353. doi:10.1371/journal.pgen.1002353

Guan, Q., Haroon, S., Bravo, D. G., Will, J. L., & Gasch, A. P. (2012). Cellular Memory of Acquired Stress Resistance inSaccharomyces cerevisiae. Genetics, 192(2), 495-505. doi:10.1534/genetics.112.143016

Winzeler, E. A. (1999). Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 285(5429), 901-906. doi:10.1126/science.285.5429.901

Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905

Alberti, S., Gitler, A. D., & Lindquist, S. (2007). A suite of Gateway®cloning vectors for high-throughput genetic analysis inSaccharomyces cerevisiae. Yeast, 24(10), 913-919. doi:10.1002/yea.1502

Aparicio, O., Geisberg, J. V., Sekinger, E., Yang, A., Moqtaderi, Z., & Struhl, K. (2005). Chromatin Immunoprecipitation for Determining the Association of Proteins with Specific Genomic Sequences In Vivo. Current Protocols in Molecular Biology. doi:10.1002/0471142727.mb2103s69

Woudstra, E. C., Gilbert, C., Fellows, J., Jansen, L., Brouwer, J., Erdjument-Bromage, H., … Svejstrup, J. Q. (2002). A Rad26–Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature, 415(6874), 929-933. doi:10.1038/415929a

Czeko, E., Seizl, M., Augsberger, C., Mielke, T., & Cramer, P. (2011). Iwr1 Directs RNA Polymerase II Nuclear Import. Molecular Cell, 42(2), 261-266. doi:10.1016/j.molcel.2011.02.033

Esberg, A., Moqtaderi, Z., Fan, X., Lu, J., Struhl, K., & Byström, A. (2011). Iwr1 Protein Is Important for Preinitiation Complex Formation by All Three Nuclear RNA Polymerases in Saccharomyces cerevisiae. PLoS ONE, 6(6), e20829. doi:10.1371/journal.pone.0020829

Rep, M., Albertyn, J., Thevelein, J. M., Prior, B. A., & Hohmann, S. (1999). Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology, 145(3), 715-727. doi:10.1099/13500872-145-3-715

Bouwman, J., Kiewiet, J., Lindenbergh, A., van Eunen, K., Siderius, M., & Bakker, B. M. (2010). Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast. Yeast, 28(1), 43-53. doi:10.1002/yea.1819

Petelenz-Kurdziel, E., Kuehn, C., Nordlander, B., Klein, D., Hong, K.-K., Jacobson, T., … Klipp, E. (2013). Quantitative Analysis of Glycerol Accumulation, Glycolysis and Growth under Hyper Osmotic Stress. PLoS Computational Biology, 9(6), e1003084. doi:10.1371/journal.pcbi.1003084

Dihazi, H., Kessler, R., & Eschrich, K. (2004). High Osmolarity Glycerol (HOG) Pathway-induced Phosphorylation and Activation of 6-Phosphofructo-2-kinase Are Essential for Glycerol Accumulation and Yeast Cell Proliferation under Hyperosmotic Stress. Journal of Biological Chemistry, 279(23), 23961-23968. doi:10.1074/jbc.m312974200

Tamas, M. J., Luyten, K., Sutherland, F. C. W., Hernandez, A., Albertyn, J., Valadi, H., … Hohmann, S. (1999). Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Molecular Microbiology, 31(4), 1087-1104. doi:10.1046/j.1365-2958.1999.01248.x

Ostergaard, S., Olsson, L., Johnston, M., & Nielsen, J. (2000). Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nature Biotechnology, 18(12), 1283-1286. doi:10.1038/82400

RIOS, G., FERRANDO, A., & SERRANO, R. (1997). Mechanisms of Salt Tolerance Conferred by Overexpression of theHAL1 Gene inSaccharomyces cerevisiae. Yeast, 13(6), 515-528. doi:10.1002/(sici)1097-0061(199705)13:6<515::aid-yea102>3.0.co;2-x

Li, S. C., & Kane, P. M. (2009). The yeast lysosome-like vacuole: Endpoint and crossroads. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1793(4), 650-663. doi:10.1016/j.bbamcr.2008.08.003

Hamilton, C. A., Taylor, G. J., & Good, A. G. (2002). Vacuolar H+-ATPase, but not mitochondrial F1F0-ATPase, is required for NaCl tolerance inSaccharomyces cerevisiae. FEMS Microbiology Letters, 208(2), 227-232. doi:10.1111/j.1574-6968.2002.tb11086.x

Kellermayer, R. (2003). Extracellular Ca2+ sensing contributes to excess Ca2+ accumulation and vacuolar fragmentation in a pmr1Delta mutant of S. cerevisiae. Journal of Cell Science, 116(8), 1637-1646. doi:10.1242/jcs.00372

Wilson, M. D., Harreman, M., Taschner, M., Reid, J., Walker, J., Erdjument-Bromage, H., … Svejstrup, J. Q. (2013). Proteasome-Mediated Processing of Def1, a Critical Step in the Cellular Response to Transcription Stress. Cell, 154(5), 983-995. doi:10.1016/j.cell.2013.07.028

Somesh, B. P., Reid, J., Liu, W.-F., Søgaard, T. M. M., Erdjument-Bromage, H., Tempst, P., & Svejstrup, J. Q. (2005). Multiple Mechanisms Confining RNA Polymerase II Ubiquitylation to Polymerases Undergoing Transcriptional Arrest. Cell, 121(6), 913-923. doi:10.1016/j.cell.2005.04.010

[-]

This item appears in the following Collection(s)

Show full item record