- -

Explicit adaptive symplectic integrators for solving Hamiltonian systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Explicit adaptive symplectic integrators for solving Hamiltonian systems

Show full item record

Blanes Zamora, S.; Iserles, A. (2012). Explicit adaptive symplectic integrators for solving Hamiltonian systems. Celestial Mechanics and Dynamical Astronomy. 114(3):297-317. https://doi.org/10.1007/s10569-012-9441-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67911

Files in this item

Item Metadata

Title: Explicit adaptive symplectic integrators for solving Hamiltonian systems
Author: Blanes Zamora, Sergio Iserles, Arieh
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
We consider Sundman and Poincaré transformations for the long-time numerical integration of Hamiltonian systems whose evolution occurs at different time scales. The transformed systems are numerically integrated using ...[+]
Subjects: Symplectic integrators , Adaptive time step , Hamiltonian systems , Sundman transformation , Poincaré transformation
Copyrigths: Cerrado
Source:
Celestial Mechanics and Dynamical Astronomy. (issn: 0923-2958 ) (eissn: 1572-9478 )
DOI: 10.1007/s10569-012-9441-z
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s10569-012-9441-z
Project ID:
info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03/
Thanks:
Sergio Blanes acknowledges the support of the Ministerio de Ciencia e Innovacion (Spain) under the coordinated project MTM2010-18246-C03 (co-financed by the ERDF of the European Union)
Type: Artículo

References

Blanes S., Budd C.J.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 89, 383–405 (2004)

Blanes S., Budd C.J.: Adaptive geometric integrators for Hamiltonian problems with approximate scale invariance. SIAM J. Sci. Comput. 26, 1089–1113 (2005)

Blanes S., Moan P.C.: Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. J. Comp. Appl. Math. 142, 313–330 (2002) [+]
Blanes S., Budd C.J.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 89, 383–405 (2004)

Blanes S., Budd C.J.: Adaptive geometric integrators for Hamiltonian problems with approximate scale invariance. SIAM J. Sci. Comput. 26, 1089–1113 (2005)

Blanes S., Moan P.C.: Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. J. Comp. Appl. Math. 142, 313–330 (2002)

Blanes S., Casas F., Ros J.: Extrapolation of symplectic integrators. Celest. Mech. Dyn. Astron. 75, 149–161 (1999)

Blanes S., Casas F., Murua A.: Splitting and composition methods in the numerical integration of differential equations. Bol. Soc. Esp. Mat. Apl. 45, 89–145 (2008)

Bond S.D., Leimkuhler B.: Time-transformations for reversible variable step-size integration. Numer. Algor. 19, 55–71 (1998)

Budd C.J., Leimkuhler B., Piggott M.D.: Scaling invariance and adaptivity. Appl. Numer. Math. 39, 261–288 (2001)

Calvo M.P., Sanz-Serna J.M.: The development of variable-step symplectic integrators, with applications to the two-body problem. SIAM J. Sci. Comput. 14, 936–952 (1993)

Calvo M.P., Sanz-Serna J.M., López-Marcos M.A.: Variable step implementations of geometric integrators. Appl. Numer. Math. 28, 1–16 (1998)

Chan R.P.K., Murua A.: Extrapolation of symplectic methods for Hamiltonian problems. Appl. Numer. Math. 34, 189–205 (2000)

Creutz M., Gocksch A.: Higher-order hybrid Monte Carlo algorithms. Phys. Rev. Lett. 63, 9–12 (1989)

Gladman B., Duncan M., Candy J.: Symplectic integrators for long-term integrations in celestial mechanics. Celest. Mech. Dyn. Astron. 52, 221–240 (1991)

Hairer E.: Variable time step integration with symplectic methods. Appl. Numer. Math. 25, 219–227 (1997)

Hairer E., Söderlind G.: Explicit, time reversible, adaptive stepsize control. SIAM J. Sci. Comput. 26, 1838–1851 (2005)

Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, vol 31, 2nd edn. Springer, Berlin (2006)

Hellström C., Mikkola S.: Explicit algorithmic regularization in the few-body problem for velocity-dependent perturbations. Celest. Mech. Dyn. Astron. 106, 143–156 (2010)

Holder T., Leimkuhler B., Reich S.: Explicit variable step-size and time-reversible integration. Appl. Numer. Math. 39, 367–377 (2001)

Huang W., Leimkuhler B.: The adaptive Verlet method. SIAM J. Sci. Comput. 18, 239–256 (1997)

Iserles A.: A First Course in the Numerical Analysis of Differential Equations. 2nd edn. Cambridge University Press, Cambridge (2008)

Kinoshita H., Yoshida H., Nakai H.: Symplectic integrators and their application to dynamical astronomy. Celest. Mech. Dyn. Astron. 50, 59–71 (1991)

Laskar J., Robutel P.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39–62 (2001)

Leimkuhler B., Reich S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)

McLachlan R.I.: Composition methods in the presence of small parameters. BIT Numer. Math. 35, 258–268 (1995a)

McLachlan R.I.: On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16(1), 151–168 (1995b)

McLachlan R.I., Quispel R.G.W.: Splitting methods. Acta Numerica 11, 341–434 (2002)

McLachlan R.I., Quispel R.G.W.: Geometric integrators for ODEs. J. Phys. A Math. Gen. 39, 5251–5285 (2006)

Mikkola S.: Practical symplectic methods with time transformation for the few-body problem. Celest. Mech. Dyn. Astron. 67, 145–165 (1997)

Mikkola S., Aarseth S.: A time-transformed leapfrog scheme. Celest. Mech. Dyn. Astron. 84, 343–354 (2002)

Mikkola S., Tanikawa K.: Explicit symplectic algorithms for time-transformed Hamiltonians. Celest. Mech. Dyn. Astron. 74, 287–295 (1999)

Preto M., Tremaine S.: A class of symplectic integrators with adaptive time step for separable Hamiltonian systems. Celest. Mech. Dyn. Astron. 118, 2532–2541 (1999)

Sanz-Serna J.M., Calvo M.P.: Numerical Hamiltonian Problems. Chapman and Hall, London (1994)

Skeel R.: Variable step size destabilizes the Störmer/leapfrog/Verlet method. BIT Numer. Math. 33, 172–175 (1993)

Sophroniou M., Spaletta G.: Derivation of symmetric composition constants for symmetric integrators. Opt. Methods Softw. 20, 597–613 (2005)

Stiefel E.L., Scheifel G.: Linear and Regular Celestial Mechanics. Springer, Berlin (1971)

Suzuki M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146(6), 319–323 (1990)

Wisdom J., Holman M.: Symplectic maps for the n-body problem. Astron. J. 102, 1528–1538 (1991)

Yoshida H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5–7), 262–268 (1990)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record