Blanes S., Budd C.J.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 89, 383–405 (2004)
Blanes S., Budd C.J.: Adaptive geometric integrators for Hamiltonian problems with approximate scale invariance. SIAM J. Sci. Comput. 26, 1089–1113 (2005)
Blanes S., Moan P.C.: Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. J. Comp. Appl. Math. 142, 313–330 (2002)
[+]
Blanes S., Budd C.J.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 89, 383–405 (2004)
Blanes S., Budd C.J.: Adaptive geometric integrators for Hamiltonian problems with approximate scale invariance. SIAM J. Sci. Comput. 26, 1089–1113 (2005)
Blanes S., Moan P.C.: Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. J. Comp. Appl. Math. 142, 313–330 (2002)
Blanes S., Casas F., Ros J.: Extrapolation of symplectic integrators. Celest. Mech. Dyn. Astron. 75, 149–161 (1999)
Blanes S., Casas F., Murua A.: Splitting and composition methods in the numerical integration of differential equations. Bol. Soc. Esp. Mat. Apl. 45, 89–145 (2008)
Bond S.D., Leimkuhler B.: Time-transformations for reversible variable step-size integration. Numer. Algor. 19, 55–71 (1998)
Budd C.J., Leimkuhler B., Piggott M.D.: Scaling invariance and adaptivity. Appl. Numer. Math. 39, 261–288 (2001)
Calvo M.P., Sanz-Serna J.M.: The development of variable-step symplectic integrators, with applications to the two-body problem. SIAM J. Sci. Comput. 14, 936–952 (1993)
Calvo M.P., Sanz-Serna J.M., López-Marcos M.A.: Variable step implementations of geometric integrators. Appl. Numer. Math. 28, 1–16 (1998)
Chan R.P.K., Murua A.: Extrapolation of symplectic methods for Hamiltonian problems. Appl. Numer. Math. 34, 189–205 (2000)
Creutz M., Gocksch A.: Higher-order hybrid Monte Carlo algorithms. Phys. Rev. Lett. 63, 9–12 (1989)
Gladman B., Duncan M., Candy J.: Symplectic integrators for long-term integrations in celestial mechanics. Celest. Mech. Dyn. Astron. 52, 221–240 (1991)
Hairer E.: Variable time step integration with symplectic methods. Appl. Numer. Math. 25, 219–227 (1997)
Hairer E., Söderlind G.: Explicit, time reversible, adaptive stepsize control. SIAM J. Sci. Comput. 26, 1838–1851 (2005)
Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, vol 31, 2nd edn. Springer, Berlin (2006)
Hellström C., Mikkola S.: Explicit algorithmic regularization in the few-body problem for velocity-dependent perturbations. Celest. Mech. Dyn. Astron. 106, 143–156 (2010)
Holder T., Leimkuhler B., Reich S.: Explicit variable step-size and time-reversible integration. Appl. Numer. Math. 39, 367–377 (2001)
Huang W., Leimkuhler B.: The adaptive Verlet method. SIAM J. Sci. Comput. 18, 239–256 (1997)
Iserles A.: A First Course in the Numerical Analysis of Differential Equations. 2nd edn. Cambridge University Press, Cambridge (2008)
Kinoshita H., Yoshida H., Nakai H.: Symplectic integrators and their application to dynamical astronomy. Celest. Mech. Dyn. Astron. 50, 59–71 (1991)
Laskar J., Robutel P.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39–62 (2001)
Leimkuhler B., Reich S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)
McLachlan R.I.: Composition methods in the presence of small parameters. BIT Numer. Math. 35, 258–268 (1995a)
McLachlan R.I.: On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16(1), 151–168 (1995b)
McLachlan R.I., Quispel R.G.W.: Splitting methods. Acta Numerica 11, 341–434 (2002)
McLachlan R.I., Quispel R.G.W.: Geometric integrators for ODEs. J. Phys. A Math. Gen. 39, 5251–5285 (2006)
Mikkola S.: Practical symplectic methods with time transformation for the few-body problem. Celest. Mech. Dyn. Astron. 67, 145–165 (1997)
Mikkola S., Aarseth S.: A time-transformed leapfrog scheme. Celest. Mech. Dyn. Astron. 84, 343–354 (2002)
Mikkola S., Tanikawa K.: Explicit symplectic algorithms for time-transformed Hamiltonians. Celest. Mech. Dyn. Astron. 74, 287–295 (1999)
Preto M., Tremaine S.: A class of symplectic integrators with adaptive time step for separable Hamiltonian systems. Celest. Mech. Dyn. Astron. 118, 2532–2541 (1999)
Sanz-Serna J.M., Calvo M.P.: Numerical Hamiltonian Problems. Chapman and Hall, London (1994)
Skeel R.: Variable step size destabilizes the Störmer/leapfrog/Verlet method. BIT Numer. Math. 33, 172–175 (1993)
Sophroniou M., Spaletta G.: Derivation of symmetric composition constants for symmetric integrators. Opt. Methods Softw. 20, 597–613 (2005)
Stiefel E.L., Scheifel G.: Linear and Regular Celestial Mechanics. Springer, Berlin (1971)
Suzuki M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146(6), 319–323 (1990)
Wisdom J., Holman M.: Symplectic maps for the n-body problem. Astron. J. 102, 1528–1538 (1991)
Yoshida H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5–7), 262–268 (1990)
[-]