- -

Explicit adaptive symplectic integrators for solving Hamiltonian systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Explicit adaptive symplectic integrators for solving Hamiltonian systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Iserles, Arieh es_ES
dc.date.accessioned 2016-07-20T15:56:29Z
dc.date.available 2016-07-20T15:56:29Z
dc.date.issued 2012-11
dc.identifier.issn 0923-2958
dc.identifier.uri http://hdl.handle.net/10251/67911
dc.description.abstract We consider Sundman and Poincaré transformations for the long-time numerical integration of Hamiltonian systems whose evolution occurs at different time scales. The transformed systems are numerically integrated using explicit symplectic methods. The schemes we consider are explicit symplectic methods with adaptive time steps and they generalise other methods from the literature, while exhibiting a high performance. The Sundman transformation can also be used on non-Hamiltonian systems while the Poincaré transformation can be used, in some cases, with more efficient symplectic integrators. The performance of both transformations with different symplectic methods is analysed on several numerical examples. es_ES
dc.description.sponsorship Sergio Blanes acknowledges the support of the Ministerio de Ciencia e Innovacion (Spain) under the coordinated project MTM2010-18246-C03 (co-financed by the ERDF of the European Union) en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Celestial Mechanics and Dynamical Astronomy es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Symplectic integrators es_ES
dc.subject Adaptive time step es_ES
dc.subject Hamiltonian systems es_ES
dc.subject Sundman transformation es_ES
dc.subject Poincaré transformation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Explicit adaptive symplectic integrators for solving Hamiltonian systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10569-012-9441-z
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Blanes Zamora, S.; Iserles, A. (2012). Explicit adaptive symplectic integrators for solving Hamiltonian systems. Celestial Mechanics and Dynamical Astronomy. 114(3):297-317. https://doi.org/10.1007/s10569-012-9441-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10569-012-9441-z es_ES
dc.description.upvformatpinicio 297 es_ES
dc.description.upvformatpfin 317 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 114 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 235378 es_ES
dc.identifier.eissn 1572-9478
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Blanes S., Budd C.J.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 89, 383–405 (2004) es_ES
dc.description.references Blanes S., Budd C.J.: Adaptive geometric integrators for Hamiltonian problems with approximate scale invariance. SIAM J. Sci. Comput. 26, 1089–1113 (2005) es_ES
dc.description.references Blanes S., Moan P.C.: Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. J. Comp. Appl. Math. 142, 313–330 (2002) es_ES
dc.description.references Blanes S., Casas F., Ros J.: Extrapolation of symplectic integrators. Celest. Mech. Dyn. Astron. 75, 149–161 (1999) es_ES
dc.description.references Blanes S., Casas F., Murua A.: Splitting and composition methods in the numerical integration of differential equations. Bol. Soc. Esp. Mat. Apl. 45, 89–145 (2008) es_ES
dc.description.references Bond S.D., Leimkuhler B.: Time-transformations for reversible variable step-size integration. Numer. Algor. 19, 55–71 (1998) es_ES
dc.description.references Budd C.J., Leimkuhler B., Piggott M.D.: Scaling invariance and adaptivity. Appl. Numer. Math. 39, 261–288 (2001) es_ES
dc.description.references Calvo M.P., Sanz-Serna J.M.: The development of variable-step symplectic integrators, with applications to the two-body problem. SIAM J. Sci. Comput. 14, 936–952 (1993) es_ES
dc.description.references Calvo M.P., Sanz-Serna J.M., López-Marcos M.A.: Variable step implementations of geometric integrators. Appl. Numer. Math. 28, 1–16 (1998) es_ES
dc.description.references Chan R.P.K., Murua A.: Extrapolation of symplectic methods for Hamiltonian problems. Appl. Numer. Math. 34, 189–205 (2000) es_ES
dc.description.references Creutz M., Gocksch A.: Higher-order hybrid Monte Carlo algorithms. Phys. Rev. Lett. 63, 9–12 (1989) es_ES
dc.description.references Gladman B., Duncan M., Candy J.: Symplectic integrators for long-term integrations in celestial mechanics. Celest. Mech. Dyn. Astron. 52, 221–240 (1991) es_ES
dc.description.references Hairer E.: Variable time step integration with symplectic methods. Appl. Numer. Math. 25, 219–227 (1997) es_ES
dc.description.references Hairer E., Söderlind G.: Explicit, time reversible, adaptive stepsize control. SIAM J. Sci. Comput. 26, 1838–1851 (2005) es_ES
dc.description.references Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, vol 31, 2nd edn. Springer, Berlin (2006) es_ES
dc.description.references Hellström C., Mikkola S.: Explicit algorithmic regularization in the few-body problem for velocity-dependent perturbations. Celest. Mech. Dyn. Astron. 106, 143–156 (2010) es_ES
dc.description.references Holder T., Leimkuhler B., Reich S.: Explicit variable step-size and time-reversible integration. Appl. Numer. Math. 39, 367–377 (2001) es_ES
dc.description.references Huang W., Leimkuhler B.: The adaptive Verlet method. SIAM J. Sci. Comput. 18, 239–256 (1997) es_ES
dc.description.references Iserles A.: A First Course in the Numerical Analysis of Differential Equations. 2nd edn. Cambridge University Press, Cambridge (2008) es_ES
dc.description.references Kinoshita H., Yoshida H., Nakai H.: Symplectic integrators and their application to dynamical astronomy. Celest. Mech. Dyn. Astron. 50, 59–71 (1991) es_ES
dc.description.references Laskar J., Robutel P.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39–62 (2001) es_ES
dc.description.references Leimkuhler B., Reich S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004) es_ES
dc.description.references McLachlan R.I.: Composition methods in the presence of small parameters. BIT Numer. Math. 35, 258–268 (1995a) es_ES
dc.description.references McLachlan R.I.: On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16(1), 151–168 (1995b) es_ES
dc.description.references McLachlan R.I., Quispel R.G.W.: Splitting methods. Acta Numerica 11, 341–434 (2002) es_ES
dc.description.references McLachlan R.I., Quispel R.G.W.: Geometric integrators for ODEs. J. Phys. A Math. Gen. 39, 5251–5285 (2006) es_ES
dc.description.references Mikkola S.: Practical symplectic methods with time transformation for the few-body problem. Celest. Mech. Dyn. Astron. 67, 145–165 (1997) es_ES
dc.description.references Mikkola S., Aarseth S.: A time-transformed leapfrog scheme. Celest. Mech. Dyn. Astron. 84, 343–354 (2002) es_ES
dc.description.references Mikkola S., Tanikawa K.: Explicit symplectic algorithms for time-transformed Hamiltonians. Celest. Mech. Dyn. Astron. 74, 287–295 (1999) es_ES
dc.description.references Preto M., Tremaine S.: A class of symplectic integrators with adaptive time step for separable Hamiltonian systems. Celest. Mech. Dyn. Astron. 118, 2532–2541 (1999) es_ES
dc.description.references Sanz-Serna J.M., Calvo M.P.: Numerical Hamiltonian Problems. Chapman and Hall, London (1994) es_ES
dc.description.references Skeel R.: Variable step size destabilizes the Störmer/leapfrog/Verlet method. BIT Numer. Math. 33, 172–175 (1993) es_ES
dc.description.references Sophroniou M., Spaletta G.: Derivation of symmetric composition constants for symmetric integrators. Opt. Methods Softw. 20, 597–613 (2005) es_ES
dc.description.references Stiefel E.L., Scheifel G.: Linear and Regular Celestial Mechanics. Springer, Berlin (1971) es_ES
dc.description.references Suzuki M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146(6), 319–323 (1990) es_ES
dc.description.references Wisdom J., Holman M.: Symplectic maps for the n-body problem. Astron. J. 102, 1528–1538 (1991) es_ES
dc.description.references Yoshida H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5–7), 262–268 (1990) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem