- -

Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation

Mostrar el registro completo del ítem

Belda Palazón, B.; Nohales Zafra, MA.; Rambla Nebot, JL.; Aceña, JL.; Delgado, O.; Fustero Lardies, S.; Martínez, MC.... (2014). Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation. Frontiers in Plant Science. 5:202-1-202-11. doi:10.3389/fpls.2014.00202

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67953

Ficheros en el ítem

Metadatos del ítem

Título: Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation
Autor: Belda Palazón, Borja Nohales Zafra, Maria Angeles Rambla Nebot, Jose Luis Aceña, José L. Delgado, Oscar Fustero Lardies, Santos Martínez, M. Carmen Granell Richart, Antonio Carbonell Gisbert, Juan Ferrando Monleón, Alejandro Ramón
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
The eukaryotic translation elongation factor eIF5A is the only protein known to contain the unusual amino acid hypusine which is essential for its biological activity. This post-translational modification is achieved by ...[+]
Palabras clave: Spermidine , Hypusine , EIF5A , 2D-electrophoresis , Abscisic acid
Derechos de uso: Reserva de todos los derechos
Fuente:
Frontiers in Plant Science. (issn: 1664-462X )
DOI: 10.3389/fpls.2014.00202
Editorial:
Frontiers Media
Versión del editor: http://dx.doi.org/10.3389/fpls.2014.00202
Tipo: Artículo

References

Belda-Palazón, B., Ruiz, L., Martí, E., Tárraga, S., Tiburcio, A. F., Culiáñez, F., … Ferrando, A. (2012). Aminopropyltransferases Involved in Polyamine Biosynthesis Localize Preferentially in the Nucleus of Plant Cells. PLoS ONE, 7(10), e46907. doi:10.1371/journal.pone.0046907

Bergeron, R. J., Weimar, W. R., Müller, R., Zimmerman, C. O., McCosar, B. H., Yao, H., & Smith, R. E. (1998). Synthesis of Reagents for the Construction of Hypusine and Deoxyhypusine Peptides and Their Application as Peptidic Antigens. Journal of Medicinal Chemistry, 41(20), 3888-3900. doi:10.1021/jm980389p

Chattopadhyay, M. K., Park, M. H., & Tabor, H. (2008). Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine. Proceedings of the National Academy of Sciences, 105(18), 6554-6559. doi:10.1073/pnas.0710970105 [+]
Belda-Palazón, B., Ruiz, L., Martí, E., Tárraga, S., Tiburcio, A. F., Culiáñez, F., … Ferrando, A. (2012). Aminopropyltransferases Involved in Polyamine Biosynthesis Localize Preferentially in the Nucleus of Plant Cells. PLoS ONE, 7(10), e46907. doi:10.1371/journal.pone.0046907

Bergeron, R. J., Weimar, W. R., Müller, R., Zimmerman, C. O., McCosar, B. H., Yao, H., & Smith, R. E. (1998). Synthesis of Reagents for the Construction of Hypusine and Deoxyhypusine Peptides and Their Application as Peptidic Antigens. Journal of Medicinal Chemistry, 41(20), 3888-3900. doi:10.1021/jm980389p

Chattopadhyay, M. K., Park, M. H., & Tabor, H. (2008). Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine. Proceedings of the National Academy of Sciences, 105(18), 6554-6559. doi:10.1073/pnas.0710970105

Chevallet, M., Luche, S., & Rabilloud, T. (2006). Silver staining of proteins in polyacrylamide gels. Nature Protocols, 1(4), 1852-1858. doi:10.1038/nprot.2006.288

Cuevas, J. C., López-Cobollo, R., Alcázar, R., Zarza, X., Koncz, C., Altabella, T., … Ferrando, A. (2008). Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature. Plant Physiology, 148(2), 1094-1105. doi:10.1104/pp.108.122945

Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743

Dias, C. A. O., Garcia, W., Zanelli, C. F., & Valentini, S. R. (2012). eIF5A dimerizes not only in vitro but also in vivo and its molecular envelope is similar to the EF-P monomer. Amino Acids, 44(2), 631-644. doi:10.1007/s00726-012-1387-7

Doerfel, L. K., Wohlgemuth, I., Kothe, C., Peske, F., Urlaub, H., & Rodnina, M. V. (2012). EF-P Is Essential for Rapid Synthesis of Proteins Containing Consecutive Proline Residues. Science, 339(6115), 85-88. doi:10.1126/science.1229017

Duguay, J., Jamal, S., Liu, Z., Wang, T.-W., & Thompson, J. E. (2007). Leaf-specific suppression of deoxyhypusine synthase in Arabidopsis thaliana enhances growth without negative pleiotropic effects. Journal of Plant Physiology, 164(4), 408-420. doi:10.1016/j.jplph.2006.02.001

Feng, H., Chen, Q., Feng, J., Zhang, J., Yang, X., & Zuo, J. (2007). Functional Characterization of the Arabidopsis Eukaryotic Translation Initiation Factor 5A-2 That Plays a Crucial Role in Plant Growth and Development by Regulating Cell Division, Cell Growth, and Cell Death. Plant Physiology, 144(3), 1531-1545. doi:10.1104/pp.107.098079

Gregio, A. P. B., Cano, V. P. S., Avaca, J. S., Valentini, S. R., & Zanelli, C. F. (2009). eIF5A has a function in the elongation step of translation in yeast. Biochemical and Biophysical Research Communications, 380(4), 785-790. doi:10.1016/j.bbrc.2009.01.148

Guo, J., Wang, S., Valerius, O., Hall, H., Zeng, Q., Li, J.-F., … Chen, J.-G. (2010). Involvement of Arabidopsis RACK1 in Protein Translation and Its Regulation by Abscisic Acid. Plant Physiology, 155(1), 370-383. doi:10.1104/pp.110.160663

Gutierrez, E., Shin, B.-S., Woolstenhulme, C. J., Kim, J.-R., Saini, P., Buskirk, A. R., & Dever, T. E. (2013). eIF5A Promotes Translation of Polyproline Motifs. Molecular Cell, 51(1), 35-45. doi:10.1016/j.molcel.2013.04.021

Hamasaki-Katagiri, N., Tabor, C. W., & Tabor, H. (1997). Spermidine biosynthesis in Saccharomyces cerevisiae: Polyaminerequirement of a null mutant of the SPE3 gene (spermidine synthase). Gene, 187(1), 35-43. doi:10.1016/s0378-1119(96)00660-9

Imai, A., Matsuyama, T., Hanzawa, Y., Akiyama, T., Tamaoki, M., Saji, H., … Takahashi, T. (2004). Spermidine Synthase Genes Are Essential for Survival of Arabidopsis. Plant Physiology, 135(3), 1565-1573. doi:10.1104/pp.104.041699

Ishfaq, M., Maeta, K., Maeda, S., Natsume, T., Ito, A., & Yoshida, M. (2012). Acetylation regulates subcellular localization of eukaryotic translation initiation factor 5A (eIF5A). FEBS Letters, 586(19), 3236-3241. doi:10.1016/j.febslet.2012.06.042

Jin, B.-F., He, K., Wang, H.-X., Wang, J., Zhou, T., Lan, Y., … Zhang, X.-M. (2003). Proteomic analysis of ubiquitin-proteasome effects: insight into the function of eukaryotic initiation factor 5A. Oncogene, 22(31), 4819-4830. doi:10.1038/sj.onc.1206738

Kang, K. R., & Chung, S. I. (2003). Protein kinase CK2 phosphorylates and interacts with deoxyhypusine synthase in HeLa cells. Experimental & Molecular Medicine, 35(6), 556-564. doi:10.1038/emm.2003.73

Klier, H., Csonga, R., Joao, H. C., Eckerskorn, C., Auer, M., Lottspeich, F., & Eder, J. (1995). Isolation and Structural Characterization of Different Isoforms of the Hypusine-Containing Protein eIF-5A from HeLa Cells. Biochemistry, 34(45), 14693-14702. doi:10.1021/bi00045a010

Łebska, M., Ciesielski, A., Szymona, L., Godecka, L., Lewandowska-Gnatowska, E., Szczegielniak, J., & Muszyńska, G. (2009). Phosphorylation of Maize Eukaryotic Translation Initiation Factor 5A (eIF5A) by Casein Kinase 2. Journal of Biological Chemistry, 285(9), 6217-6226. doi:10.1074/jbc.m109.018770

Lee, S. B., Park, J. H., Kaevel, J., Sramkova, M., Weigert, R., & Park, M. H. (2009). The effect of hypusine modification on the intracellular localization of eIF5A. Biochemical and Biophysical Research Communications, 383(4), 497-502. doi:10.1016/j.bbrc.2009.04.049

Li, C. H., Ohn, T., Ivanov, P., Tisdale, S., & Anderson, P. (2010). eIF5A Promotes Translation Elongation, Polysome Disassembly and Stress Granule Assembly. PLoS ONE, 5(4), e9942. doi:10.1371/journal.pone.0009942

Liu, Z., Duguay, J., Ma, F., Wang, T.-W., Tshin, R., Hopkins, M. T., … Thompson, J. E. (2008). Modulation of eIF5A1 expression alters xylem abundance in Arabidopsis thaliana. Journal of Experimental Botany, 59(4), 939-950. doi:10.1093/jxb/ern017

MA, F., LIU, Z., WANG, T.-W., HOPKINS, M. T., PETERSON, C. A., & THOMPSON, J. E. (2010). Arabidopsis eIF5A3 influences growth and the response to osmotic and nutrient stress. Plant, Cell & Environment, 33(10), 1682-1696. doi:10.1111/j.1365-3040.2010.02173.x

Maier, B., Ogihara, T., Trace, A. P., Tersey, S. A., Robbins, R. D., Chakrabarti, S. K., … Mirmira, R. G. (2010). The unique hypusine modification of eIF5A promotes islet β cell inflammation and dysfunction in mice. Journal of Clinical Investigation, 120(6), 2156-2170. doi:10.1172/jci38924

Mandal, S., Mandal, A., Johansson, H. E., Orjalo, A. V., & Park, M. H. (2013). Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. Proceedings of the National Academy of Sciences, 110(6), 2169-2174. doi:10.1073/pnas.1219002110

Moreno-Romero, J., Carme Espunya, M., Platara, M., Ariño, J., & Carmen Martínez, M. (2008). A role for protein kinase CK2 in plant development: evidence obtained using a dominant-negative mutant. The Plant Journal, 55(1), 118-130. doi:10.1111/j.1365-313x.2008.03494.x

Nishimura, K., Lee, S. B., Park, J. H., & Park, M. H. (2011). Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development. Amino Acids, 42(2-3), 703-710. doi:10.1007/s00726-011-0986-z

NISHIMURA, K., OHKI, Y., FUKUCHI-SHIMOGORI, T., SAKATA, K., SAIGA, K., BEPPU, T., … IGARASHI, K. (2002). Inhibition of cell growth through inactivation of eukaryotic translation initiation factor 5A (eIF5A) by deoxyspergualin. Biochemical Journal, 363(3), 761. doi:10.1042/0264-6021:3630761

Pagnussat, G. C. (2005). Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development, 132(3), 603-614. doi:10.1242/dev.01595

Park, J. H., Dias, C. A. O., Lee, S. B., Valentini, S. R., Sokabe, M., Fraser, C. S., & Park, M. H. (2010). Production of active recombinant eIF5A: reconstitution in E.coli of eukaryotic hypusine modification of eIF5A by its coexpression with modifying enzymes. Protein Engineering Design and Selection, 24(3), 301-309. doi:10.1093/protein/gzq110

Park, M. H. (2006). The Post-Translational Synthesis of a Polyamine-Derived Amino Acid, Hypusine, in the Eukaryotic Translation Initiation Factor 5A (eIF5A). The Journal of Biochemistry, 139(2), 161-169. doi:10.1093/jb/mvj034

Park, M. H., Lee, Y. B., & Joe, Y. A. (1997). Hypusine Is Essential for Eukaryotic Cell Proliferation. Neurosignals, 6(3), 115-123. doi:10.1159/000109117

Patel, P. H., Costa-Mattioli, M., Schulze, K. L., & Bellen, H. J. (2009). The Drosophila deoxyhypusine hydroxylase homologue nero and its target eIF5A are required for cell growth and the regulation of autophagy. The Journal of Cell Biology, 185(7), 1181-1194. doi:10.1083/jcb.200904161

Ren, B., Chen, Q., Hong, S., Zhao, W., Feng, J., Feng, H., & Zuo, J. (2013). The Arabidopsis Eukaryotic Translation Initiation Factor eIF5A-2 Regulates Root Protoxylem Development by Modulating Cytokinin Signaling. The Plant Cell, 25(10), 3841-3857. doi:10.1105/tpc.113.116236

Saez, A., Robert, N., Maktabi, M. H., Schroeder, J. I., Serrano, R., & Rodriguez, P. L. (2006). Enhancement of Abscisic Acid Sensitivity and Reduction of Water Consumption in Arabidopsis by Combined Inactivation of the Protein Phosphatases Type 2C ABI1 and HAB1. Plant Physiology, 141(4), 1389-1399. doi:10.1104/pp.106.081018

Saini, P., Eyler, D. E., Green, R., & Dever, T. E. (2009). Hypusine-containing protein eIF5A promotes translation elongation. Nature, 459(7243), 118-121. doi:10.1038/nature08034

Scheich, C., Kummel, D., Soumailakakis, D., Heinemann, U., & Bussow, K. (2007). Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Research, 35(6), e43-e43. doi:10.1093/nar/gkm067

Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., Sagliocco, F., Wilm, M., Vorm, O., … Mann, M. (1996). Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels. Proceedings of the National Academy of Sciences, 93(25), 14440-14445. doi:10.1073/pnas.93.25.14440

Strohalm, M., Hassman, M., Košata, B., & Kodíček, M. (2008). mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Communications in Mass Spectrometry, 22(6), 905-908. doi:10.1002/rcm.3444

Vizcaíno, J. A., Côté, R. G., Csordas, A., Dianes, J. A., Fabregat, A., Foster, J. M., … Hermjakob, H. (2012). The Proteomics Identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Research, 41(D1), D1063-D1069. doi:10.1093/nar/gks1262

Wang, L., Xu, C., Wang, C., & Wang, Y. (2012). Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance. BMC Plant Biology, 12(1), 118. doi:10.1186/1471-2229-12-118

Wolff, E. C., Kang, K. R., Kim, Y. S., & Park, M. H. (2007). Posttranslational synthesis of hypusine: evolutionary progression and specificity of the hypusine modification. Amino Acids, 33(2), 341-350. doi:10.1007/s00726-007-0525-0

Xu, A., & Chen, K. Y. (2000). Hypusine Is Required for a Sequence-specific Interaction of Eukaryotic Initiation Factor 5A with Postsystematic Evolution of Ligands by Exponential Enrichment RNA. Journal of Biological Chemistry, 276(4), 2555-2561. doi:10.1074/jbc.m008982200

XU, A., JAO, D. L.-E., & CHEN, K. Y. (2004). Identification of mRNA that binds to eukaryotic initiation factor 5A by affinity co-purification and differential display. Biochemical Journal, 384(3), 585-590. doi:10.1042/bj20041232

Xu, J., Zhang, B., Jiang, C., & Ming, F. (2010). RceIF5A, encoding an eukaryotic translation initiation factor 5A in Rosa chinensis, can enhance thermotolerance, oxidative and osmotic stress resistance of Arabidopsis thaliana. Plant Molecular Biology, 75(1-2), 167-178. doi:10.1007/s11103-010-9716-2

Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem