- -

Towards an improved estimation of the biological components of residual feed intake in growing cattle

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Towards an improved estimation of the biological components of residual feed intake in growing cattle

Mostrar el registro completo del ítem

Savietto, D.; Berry, D.; Friggens, N. (2014). Towards an improved estimation of the biological components of residual feed intake in growing cattle. Journal of Animal Science. 92(2):467-476. doi:10.2527/jas.2013-6894

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67958

Ficheros en el ítem

Metadatos del ítem

Título: Towards an improved estimation of the biological components of residual feed intake in growing cattle
Autor: Savietto, Davi Berry, D.P. Friggens, N.C.
Entidad UPV: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Fecha difusión:
Resumen:
Residual feed intake (RFI) is the difference between observed and predicted feed intake. It is calculated as the residuals from a multiple regression model of DMI on the various energy expenditures (e.g., maintenance, ...[+]
Palabras clave: Beef , Feed efficiency , Genetic , Residual feed intake , Random regression
Derechos de uso: Cerrado
Fuente:
Journal of Animal Science. (issn: 0021-8812 )
DOI: 10.2527/jas.2013-6894
Editorial:
American Society of Animal Science
Versión del editor: http://dx.doi.org/10.2527/jas.2013-6894
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/238562/EU/Developing Genetic Tools to Mitigate the Environmental Impact of Dairy Systems/
Agradecimientos:
Financial support is gratefully acknowledged from the Marie Curie Initial Training Network project Greenhouse Milk funded by the European Commission, Framework 7. Contribution of the data from the Irish Cattle Breeding ...[+]
Tipo: Artículo

References

Arthur, P. F., Archer, J. A., Johnston, D. J., Herd, R. M., Richardson, E. C., & Parnell, P. F. (2001). Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. Journal of Animal Science, 79(11), 2805. doi:10.2527/2001.79112805x

Barendse, W., Reverter, A., Bunch, R. J., Harrison, B. E., Barris, W., & Thomas, M. B. (2007). A Validated Whole-Genome Association Study of Efficient Food Conversion in Cattle. Genetics, 176(3), 1893-1905. doi:10.1534/genetics.107.072637

Basarab, J. A., Price, M. A., Aalhus, J. L., Okine, E. K., Snelling, W. M., & Lyle, K. L. (2003). Residual feed intake and body composition in young growing cattle. Canadian Journal of Animal Science, 83(2), 189-204. doi:10.4141/a02-065 [+]
Arthur, P. F., Archer, J. A., Johnston, D. J., Herd, R. M., Richardson, E. C., & Parnell, P. F. (2001). Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. Journal of Animal Science, 79(11), 2805. doi:10.2527/2001.79112805x

Barendse, W., Reverter, A., Bunch, R. J., Harrison, B. E., Barris, W., & Thomas, M. B. (2007). A Validated Whole-Genome Association Study of Efficient Food Conversion in Cattle. Genetics, 176(3), 1893-1905. doi:10.1534/genetics.107.072637

Basarab, J. A., Price, M. A., Aalhus, J. L., Okine, E. K., Snelling, W. M., & Lyle, K. L. (2003). Residual feed intake and body composition in young growing cattle. Canadian Journal of Animal Science, 83(2), 189-204. doi:10.4141/a02-065

Berry, D. P., & Crowley, J. J. (2013). CELL BIOLOGY SYMPOSIUM: Genetics of feed efficiency in dairy and beef cattle1. Journal of Animal Science, 91(4), 1594-1613. doi:10.2527/jas.2012-5862

Birnie, J. W., Agnew, R. E., & Gordon, F. J. (2000). The Influence of Body Condition on the Fasting Energy Metabolism of Nonpregnant, Nonlactating Dairy Cows. Journal of Dairy Science, 83(6), 1217-1223. doi:10.3168/jds.s0022-0302(00)74987-3

Bottje, W. G., & Carstens, G. E. (2009). Association of mitochondrial function and feed efficiency in poultry and livestock species1. Journal of Animal Science, 87(suppl_14), E48-E63. doi:10.2527/jas.2008-1379

Chen, Y., Gondro, C., Quinn, K., Herd, R. M., Parnell, P. F., & Vanselow, B. (2011). Global gene expression profiling reveals genes expressed differentially in cattle with high and low residual feed intake. Animal Genetics, 42(5), 475-490. doi:10.1111/j.1365-2052.2011.02182.x

Conroy, S. B., Drennan, M. J., Kenny, D. A., & McGee, M. (2009). The relationship of live animal muscular and skeletal scores, ultrasound measurements and carcass classification scores with carcass composition and value in steers. animal, 3(11), 1613-1624. doi:10.1017/s1751731109990395

Crowley, J. J., McGee, M., Kenny, D. A., Crews, D. H., Evans, R. D., & Berry, D. P. (2010). Phenotypic and genetic parameters for different measures of feed efficiency in different breeds of Irish performance-tested beef bulls. Journal of Animal Science, 88(3), 885-894. doi:10.2527/jas.2009-1852

Durunna, O. N., Plastow, G., Mujibi, F. D. N., Grant, J., Mah, J., Basarab, J. A., … Wang, Z. (2011). Genetic parameters and genotype × environment interaction for feed efficiency traits in steers fed grower and finisher diets1. Journal of Animal Science, 89(11), 3394-3400. doi:10.2527/jas.2010-3516

Emmans, G. C. (1994). Effective energy: a concept of energy utilization applied across species. British Journal of Nutrition, 71(6), 801-821. doi:10.1079/bjn19940188

Emmans, G. C. (1997). A Method to Predict the Food Intake of Domestic Animals from Birth to Maturity as a Function of Time. Journal of Theoretical Biology, 186(2), 189-199. doi:10.1006/jtbi.1996.0357

Friggens, N. C., Ridder, C., & Løvendahl, P. (2007). On the Use of Milk Composition Measures to Predict the Energy Balance of Dairy Cows. Journal of Dairy Science, 90(12), 5453-5467. doi:10.3168/jds.2006-821

Grubbs, J. K., Fritchen, A. N., Huff-Lonergan, E., Gabler, N. K., & Lonergan, S. M. (2013). Selection for residual feed intake alters the mitochondria protein profile in pigs. Journal of Proteomics, 80, 334-345. doi:10.1016/j.jprot.2013.01.017

Herd, R. M., & Arthur, P. F. (2009). Physiological basis for residual feed intake1. Journal of Animal Science, 87(suppl_14), E64-E71. doi:10.2527/jas.2008-1345

Herd, R. M., Oddy, V. H., & Richardson, E. C. (2004). Biological basis for variation in residual feed intake in beef cattle. 1. Review of potential mechanisms. Australian Journal of Experimental Agriculture, 44(5), 423. doi:10.1071/ea02220

Hoque, M. A., Arthur, P. F., Hiramoto, K., & Oikawa, T. (2006). Genetic relationship between different measures of feed efficiency and its component traits in Japanese Black (Wagyu) bulls. Livestock Science, 99(2-3), 111-118. doi:10.1016/j.livprodsci.2005.06.004

Karisa, B. K., Thomson, J., Wang, Z., Stothard, P., Moore, S. S., & Plastow, G. S. (2013). Candidate genes and single nucleotide polymorphisms associated with variation in residual feed intake in beef cattle1. Journal of Animal Science, 91(8), 3502-3513. doi:10.2527/jas.2012-6170

Kirkland, R. ., & Gordon, F. . (1999). The metabolisable energy requirement for maintenance and the efficiency of use of metabolisable energy for lactation and tissue gain in dairy cows offered a straw/concentrate ration. Livestock Production Science, 61(1), 23-31. doi:10.1016/s0301-6226(99)00046-9

Kirkland, R. ., Yan, T., Agnew, R. ., & Gordon, F. . (2002). Efficiency of use of body tissue energy for milk production in lactating dairy cows. Livestock Production Science, 73(2-3), 131-138. doi:10.1016/s0301-6226(01)00259-7

Kleiber, M. (1947). BODY SIZE AND METABOLIC RATE. Physiological Reviews, 27(4), 511-541. doi:10.1152/physrev.1947.27.4.511

Koch, R. M., Swiger, L. A., Chambers, D., & Gregory, K. E. (1963). Efficiency of Feed Use in Beef Cattle. Journal of Animal Science, 22(2), 486-494. doi:10.2527/jas1963.222486x

Kolath, W. H., Kerley, M. S., Golden, J. W., & Keisler, D. H. (2006). The relationship between mitochondrial function and residual feed intake in Angus steers1. Journal of Animal Science, 84(4), 861-865. doi:10.2527/2006.844861x

Meyer, J. H., & Garrett, W. N. (1967). Efficiency of Feed Utilization. Journal of Animal Science, 26(3), 638-646. doi:10.2527/jas1967.263638x

Moe, P. W., Tyrrell, H. F., & Flatt, W. P. (1971). Energetics of Body Tissue Mobilization. Journal of Dairy Science, 54(4), 548-553. doi:10.3168/jds.s0022-0302(71)85886-1

Moreau, M., Siebert, S., Buerkert, A., & Schlecht, E. (2009). Use of a tri-axial accelerometer for automated recording and classification of goats’ grazing behaviour. Applied Animal Behaviour Science, 119(3-4), 158-170. doi:10.1016/j.applanim.2009.04.008

Nieuwhof, G. J., van Arendonk, J. A. M., Vos, H., & Korver, S. (1992). Genetic relationships between feed intake, efficiency and production traits in growing bulls, growing heifers and lactating heifers. Livestock Production Science, 32(3), 189-202. doi:10.1016/s0301-6226(12)80001-7

Nkrumah, J. D., Li, C., Basarab, J. B., Guercio, S., Meng, Y., Murdoch, B., … Moore, S. S. (2004). Association of a single nucleotide polymorphism in the bovine leptin gene with feed intake, feed efficiency, growth, feeding behaviour, carcass quality and body composition. Canadian Journal of Animal Science, 84(2), 211-219. doi:10.4141/a03-033

Nkrumah, J. D., Sherman, E. L., Li, C., Marques, E., Crews, D. H., Bartusiak, R., … Moore, S. S. (2007). Primary genome scan to identify putative quantitative trait loci for feedlot growth rate, feed intake, and feed efficiency of beef cattle1. Journal of Animal Science, 85(12), 3170-3181. doi:10.2527/jas.2007-0234

Noblet, J., Karege, C., Dubois, S., & van Milgen, J. (1999). Metabolic utilization of energy and maintenance requirements in growing pigs: effects of sex and genotype. Journal of Animal Science, 77(5), 1208. doi:10.2527/1999.7751208x

Owens, F. N., Gill, D. R., Secrist, D. S., & Coleman, S. W. (1995). Review of some aspects of growth and development of feedlot cattle. Journal of Animal Science, 73(10), 3152. doi:10.2527/1995.73103152x

Pullar, J. D., & Webster, A. J. F. (1977). The energy cost of fat and protein deposition in the rat. British Journal of Nutrition, 37(3), 355-363. doi:10.1079/bjn19770039

Ramseyer, A., Boissy, A., Thierry, B., & Dumont, B. (2009). Individual and social determinants of spontaneous group movements in cattle and sheep. animal, 3(09), 1319-1326. doi:10.1017/s1751731109004790

Ramos, M. H., & Kerley, M. S. (2013). Mitochondrial complex I protein differs among residual feed intake phenotype in beef cattle. Journal of Animal Science, 91(7), 3299-3304. doi:10.2527/jas.2012-5589

Richardson, E. C., & Herd, R. M. (2004). Biological basis for variation in residual feed intake in beef cattle. 2. Synthesis of results following divergent selection. Australian Journal of Experimental Agriculture, 44(5), 431. doi:10.1071/ea02221

Robinson, D. L., & Oddy, V. H. (2004). Genetic parameters for feed efficiency, fatness, muscle area and feeding behaviour of feedlot finished beef cattle. Livestock Production Science, 90(2-3), 255-270. doi:10.1016/j.livprodsci.2004.06.011

Schenkel, F. S., Miller, S. P., & Wilton, J. W. (2004). Genetic parameters and breed differences for feed efficiency, growth, and body composition traits of young beef bulls. Canadian Journal of Animal Science, 84(2), 177-185. doi:10.4141/a03-085

Sherman, E. L., Nkrumah, J. D., Murdoch, B. M., & Moore, S. S. (2008). Identification of polymorphisms influencing feed intake and efficiency in beef cattle. Animal Genetics, 39(3), 225-231. doi:10.1111/j.1365-2052.2008.01704.x

Snelling, W. M., Allan, M. F., Keele, J. W., Kuehn, L. A., Thallman, R. M., Bennett, G. L., … Rolfe, K. M. (2011). Partial-genome evaluation of postweaning feed intake and efficiency of crossbred beef cattle1,2. Journal of Animal Science, 89(6), 1731-1741. doi:10.2527/jas.2010-3526

Thorup, V. M., Edwards, D., & Friggens, N. C. (2012). On-farm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score. Journal of Dairy Science, 95(4), 1784-1793. doi:10.3168/jds.2011-4631

Veerkamp, R. F., Emmans, G. C., Cromie, A. R., & Simm, G. (1995). Variance components for residual feed intake in dairy cows. Livestock Production Science, 41(2), 111-120. doi:10.1016/0301-6226(94)00056-d

Webster, A. J. F. (1981). The energetic efficiency of metabolism. Proceedings of the Nutrition Society, 40(1), 121-128. doi:10.1079/pns19810017

Wesley, R. L., Cibils, A. F., Mulliniks, J. T., Pollak, E. R., Petersen, M. K., & Fredrickson, E. L. (2012). An assessment of behavioural syndromes in rangeland-raised beef cattle. Applied Animal Behaviour Science, 139(3-4), 183-194. doi:10.1016/j.applanim.2012.04.005

Wright, I. A., & Russel, A. J. F. (1984). Estimation in vivo of the chemical composition of the bodies of mature cows. Animal Science, 38(1), 33-44. doi:10.1017/s0003356100041325

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem