- -

Towards an improved estimation of the biological components of residual feed intake in growing cattle

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Towards an improved estimation of the biological components of residual feed intake in growing cattle

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Savietto, Davi es_ES
dc.contributor.author Berry, D.P. es_ES
dc.contributor.author Friggens, N.C. es_ES
dc.date.accessioned 2016-07-21T10:02:59Z
dc.date.available 2016-07-21T10:02:59Z
dc.date.issued 2014-02
dc.identifier.issn 0021-8812
dc.identifier.uri http://hdl.handle.net/10251/67958
dc.description.abstract Residual feed intake (RFI) is the difference between observed and predicted feed intake. It is calculated as the residuals from a multiple regression model of DMI on the various energy expenditures (e.g., maintenance, growth, activity). Residual feed intake is often cited to be indicative of feed efficiency differences among animals. However, explaining a large proportion of the (phenotypic and genetic) interanimal variation in RFI remains difficult. Here we first describe a biological framework for RFI dwelling on similarities between RFI and energy balance. Alternative phenotypic and genetic statistical models are subsequently applied to a dataset of 1,963 growing bulls of 2 British and 3 Continental breeds. The novel aspect of this study was the use of a mixed model framework to quantify the heritable interanimal variation in the partial regression coefficients on the energy expenditure traits within the RFI equation. Heritable genetic variation in individual animal regression coefficients for metabolic live weight existed. No significant genetic variation in animal-level regression coefficients for growth or body fat level, however, existed in the study population. The presence of genetic variation in the partial regression coefficient of maintenance suggests the existence of interanimal variation in maintenance efficiency. However, it could also simply reflect interanimal genetic variation in correlated energy expenditure traits not included in the statistical model. Estimated breeding values for the random regression coefficient could be useful phenotypes in themselves for studies wishing to elucidate the underlying mechanisms governing differences among animals in RFI. es_ES
dc.description.sponsorship Financial support is gratefully acknowledged from the Marie Curie Initial Training Network project Greenhouse Milk funded by the European Commission, Framework 7. Contribution of the data from the Irish Cattle Breeding Federation is also acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher American Society of Animal Science es_ES
dc.relation.ispartof Journal of Animal Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Beef es_ES
dc.subject Feed efficiency es_ES
dc.subject Genetic es_ES
dc.subject Residual feed intake es_ES
dc.subject Random regression es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Towards an improved estimation of the biological components of residual feed intake in growing cattle es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2527/jas.2013-6894
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/238562/EU/Developing Genetic Tools to Mitigate the Environmental Impact of Dairy Systems/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Savietto, D.; Berry, D.; Friggens, N. (2014). Towards an improved estimation of the biological components of residual feed intake in growing cattle. Journal of Animal Science. 92(2):467-476. doi:10.2527/jas.2013-6894 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.2527/jas.2013-6894 es_ES
dc.description.upvformatpinicio 467 es_ES
dc.description.upvformatpfin 476 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 92 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 261239 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Arthur, P. F., Archer, J. A., Johnston, D. J., Herd, R. M., Richardson, E. C., & Parnell, P. F. (2001). Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. Journal of Animal Science, 79(11), 2805. doi:10.2527/2001.79112805x es_ES
dc.description.references Barendse, W., Reverter, A., Bunch, R. J., Harrison, B. E., Barris, W., & Thomas, M. B. (2007). A Validated Whole-Genome Association Study of Efficient Food Conversion in Cattle. Genetics, 176(3), 1893-1905. doi:10.1534/genetics.107.072637 es_ES
dc.description.references Basarab, J. A., Price, M. A., Aalhus, J. L., Okine, E. K., Snelling, W. M., & Lyle, K. L. (2003). Residual feed intake and body composition in young growing cattle. Canadian Journal of Animal Science, 83(2), 189-204. doi:10.4141/a02-065 es_ES
dc.description.references Berry, D. P., & Crowley, J. J. (2013). CELL BIOLOGY SYMPOSIUM: Genetics of feed efficiency in dairy and beef cattle1. Journal of Animal Science, 91(4), 1594-1613. doi:10.2527/jas.2012-5862 es_ES
dc.description.references Birnie, J. W., Agnew, R. E., & Gordon, F. J. (2000). The Influence of Body Condition on the Fasting Energy Metabolism of Nonpregnant, Nonlactating Dairy Cows. Journal of Dairy Science, 83(6), 1217-1223. doi:10.3168/jds.s0022-0302(00)74987-3 es_ES
dc.description.references Bottje, W. G., & Carstens, G. E. (2009). Association of mitochondrial function and feed efficiency in poultry and livestock species1. Journal of Animal Science, 87(suppl_14), E48-E63. doi:10.2527/jas.2008-1379 es_ES
dc.description.references Chen, Y., Gondro, C., Quinn, K., Herd, R. M., Parnell, P. F., & Vanselow, B. (2011). Global gene expression profiling reveals genes expressed differentially in cattle with high and low residual feed intake. Animal Genetics, 42(5), 475-490. doi:10.1111/j.1365-2052.2011.02182.x es_ES
dc.description.references Conroy, S. B., Drennan, M. J., Kenny, D. A., & McGee, M. (2009). The relationship of live animal muscular and skeletal scores, ultrasound measurements and carcass classification scores with carcass composition and value in steers. animal, 3(11), 1613-1624. doi:10.1017/s1751731109990395 es_ES
dc.description.references Crowley, J. J., McGee, M., Kenny, D. A., Crews, D. H., Evans, R. D., & Berry, D. P. (2010). Phenotypic and genetic parameters for different measures of feed efficiency in different breeds of Irish performance-tested beef bulls. Journal of Animal Science, 88(3), 885-894. doi:10.2527/jas.2009-1852 es_ES
dc.description.references Durunna, O. N., Plastow, G., Mujibi, F. D. N., Grant, J., Mah, J., Basarab, J. A., … Wang, Z. (2011). Genetic parameters and genotype × environment interaction for feed efficiency traits in steers fed grower and finisher diets1. Journal of Animal Science, 89(11), 3394-3400. doi:10.2527/jas.2010-3516 es_ES
dc.description.references Emmans, G. C. (1994). Effective energy: a concept of energy utilization applied across species. British Journal of Nutrition, 71(6), 801-821. doi:10.1079/bjn19940188 es_ES
dc.description.references Emmans, G. C. (1997). A Method to Predict the Food Intake of Domestic Animals from Birth to Maturity as a Function of Time. Journal of Theoretical Biology, 186(2), 189-199. doi:10.1006/jtbi.1996.0357 es_ES
dc.description.references Friggens, N. C., Ridder, C., & Løvendahl, P. (2007). On the Use of Milk Composition Measures to Predict the Energy Balance of Dairy Cows. Journal of Dairy Science, 90(12), 5453-5467. doi:10.3168/jds.2006-821 es_ES
dc.description.references Grubbs, J. K., Fritchen, A. N., Huff-Lonergan, E., Gabler, N. K., & Lonergan, S. M. (2013). Selection for residual feed intake alters the mitochondria protein profile in pigs. Journal of Proteomics, 80, 334-345. doi:10.1016/j.jprot.2013.01.017 es_ES
dc.description.references Herd, R. M., & Arthur, P. F. (2009). Physiological basis for residual feed intake1. Journal of Animal Science, 87(suppl_14), E64-E71. doi:10.2527/jas.2008-1345 es_ES
dc.description.references Herd, R. M., Oddy, V. H., & Richardson, E. C. (2004). Biological basis for variation in residual feed intake in beef cattle. 1. Review of potential mechanisms. Australian Journal of Experimental Agriculture, 44(5), 423. doi:10.1071/ea02220 es_ES
dc.description.references Hoque, M. A., Arthur, P. F., Hiramoto, K., & Oikawa, T. (2006). Genetic relationship between different measures of feed efficiency and its component traits in Japanese Black (Wagyu) bulls. Livestock Science, 99(2-3), 111-118. doi:10.1016/j.livprodsci.2005.06.004 es_ES
dc.description.references Karisa, B. K., Thomson, J., Wang, Z., Stothard, P., Moore, S. S., & Plastow, G. S. (2013). Candidate genes and single nucleotide polymorphisms associated with variation in residual feed intake in beef cattle1. Journal of Animal Science, 91(8), 3502-3513. doi:10.2527/jas.2012-6170 es_ES
dc.description.references Kirkland, R. ., & Gordon, F. . (1999). The metabolisable energy requirement for maintenance and the efficiency of use of metabolisable energy for lactation and tissue gain in dairy cows offered a straw/concentrate ration. Livestock Production Science, 61(1), 23-31. doi:10.1016/s0301-6226(99)00046-9 es_ES
dc.description.references Kirkland, R. ., Yan, T., Agnew, R. ., & Gordon, F. . (2002). Efficiency of use of body tissue energy for milk production in lactating dairy cows. Livestock Production Science, 73(2-3), 131-138. doi:10.1016/s0301-6226(01)00259-7 es_ES
dc.description.references Kleiber, M. (1947). BODY SIZE AND METABOLIC RATE. Physiological Reviews, 27(4), 511-541. doi:10.1152/physrev.1947.27.4.511 es_ES
dc.description.references Koch, R. M., Swiger, L. A., Chambers, D., & Gregory, K. E. (1963). Efficiency of Feed Use in Beef Cattle. Journal of Animal Science, 22(2), 486-494. doi:10.2527/jas1963.222486x es_ES
dc.description.references Kolath, W. H., Kerley, M. S., Golden, J. W., & Keisler, D. H. (2006). The relationship between mitochondrial function and residual feed intake in Angus steers1. Journal of Animal Science, 84(4), 861-865. doi:10.2527/2006.844861x es_ES
dc.description.references Meyer, J. H., & Garrett, W. N. (1967). Efficiency of Feed Utilization. Journal of Animal Science, 26(3), 638-646. doi:10.2527/jas1967.263638x es_ES
dc.description.references Moe, P. W., Tyrrell, H. F., & Flatt, W. P. (1971). Energetics of Body Tissue Mobilization. Journal of Dairy Science, 54(4), 548-553. doi:10.3168/jds.s0022-0302(71)85886-1 es_ES
dc.description.references Moreau, M., Siebert, S., Buerkert, A., & Schlecht, E. (2009). Use of a tri-axial accelerometer for automated recording and classification of goats’ grazing behaviour. Applied Animal Behaviour Science, 119(3-4), 158-170. doi:10.1016/j.applanim.2009.04.008 es_ES
dc.description.references Nieuwhof, G. J., van Arendonk, J. A. M., Vos, H., & Korver, S. (1992). Genetic relationships between feed intake, efficiency and production traits in growing bulls, growing heifers and lactating heifers. Livestock Production Science, 32(3), 189-202. doi:10.1016/s0301-6226(12)80001-7 es_ES
dc.description.references Nkrumah, J. D., Li, C., Basarab, J. B., Guercio, S., Meng, Y., Murdoch, B., … Moore, S. S. (2004). Association of a single nucleotide polymorphism in the bovine leptin gene with feed intake, feed efficiency, growth, feeding behaviour, carcass quality and body composition. Canadian Journal of Animal Science, 84(2), 211-219. doi:10.4141/a03-033 es_ES
dc.description.references Nkrumah, J. D., Sherman, E. L., Li, C., Marques, E., Crews, D. H., Bartusiak, R., … Moore, S. S. (2007). Primary genome scan to identify putative quantitative trait loci for feedlot growth rate, feed intake, and feed efficiency of beef cattle1. Journal of Animal Science, 85(12), 3170-3181. doi:10.2527/jas.2007-0234 es_ES
dc.description.references Noblet, J., Karege, C., Dubois, S., & van Milgen, J. (1999). Metabolic utilization of energy and maintenance requirements in growing pigs: effects of sex and genotype. Journal of Animal Science, 77(5), 1208. doi:10.2527/1999.7751208x es_ES
dc.description.references Owens, F. N., Gill, D. R., Secrist, D. S., & Coleman, S. W. (1995). Review of some aspects of growth and development of feedlot cattle. Journal of Animal Science, 73(10), 3152. doi:10.2527/1995.73103152x es_ES
dc.description.references Pullar, J. D., & Webster, A. J. F. (1977). The energy cost of fat and protein deposition in the rat. British Journal of Nutrition, 37(3), 355-363. doi:10.1079/bjn19770039 es_ES
dc.description.references Ramseyer, A., Boissy, A., Thierry, B., & Dumont, B. (2009). Individual and social determinants of spontaneous group movements in cattle and sheep. animal, 3(09), 1319-1326. doi:10.1017/s1751731109004790 es_ES
dc.description.references Ramos, M. H., & Kerley, M. S. (2013). Mitochondrial complex I protein differs among residual feed intake phenotype in beef cattle. Journal of Animal Science, 91(7), 3299-3304. doi:10.2527/jas.2012-5589 es_ES
dc.description.references Richardson, E. C., & Herd, R. M. (2004). Biological basis for variation in residual feed intake in beef cattle. 2. Synthesis of results following divergent selection. Australian Journal of Experimental Agriculture, 44(5), 431. doi:10.1071/ea02221 es_ES
dc.description.references Robinson, D. L., & Oddy, V. H. (2004). Genetic parameters for feed efficiency, fatness, muscle area and feeding behaviour of feedlot finished beef cattle. Livestock Production Science, 90(2-3), 255-270. doi:10.1016/j.livprodsci.2004.06.011 es_ES
dc.description.references Schenkel, F. S., Miller, S. P., & Wilton, J. W. (2004). Genetic parameters and breed differences for feed efficiency, growth, and body composition traits of young beef bulls. Canadian Journal of Animal Science, 84(2), 177-185. doi:10.4141/a03-085 es_ES
dc.description.references Sherman, E. L., Nkrumah, J. D., Murdoch, B. M., & Moore, S. S. (2008). Identification of polymorphisms influencing feed intake and efficiency in beef cattle. Animal Genetics, 39(3), 225-231. doi:10.1111/j.1365-2052.2008.01704.x es_ES
dc.description.references Snelling, W. M., Allan, M. F., Keele, J. W., Kuehn, L. A., Thallman, R. M., Bennett, G. L., … Rolfe, K. M. (2011). Partial-genome evaluation of postweaning feed intake and efficiency of crossbred beef cattle1,2. Journal of Animal Science, 89(6), 1731-1741. doi:10.2527/jas.2010-3526 es_ES
dc.description.references Thorup, V. M., Edwards, D., & Friggens, N. C. (2012). On-farm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score. Journal of Dairy Science, 95(4), 1784-1793. doi:10.3168/jds.2011-4631 es_ES
dc.description.references Veerkamp, R. F., Emmans, G. C., Cromie, A. R., & Simm, G. (1995). Variance components for residual feed intake in dairy cows. Livestock Production Science, 41(2), 111-120. doi:10.1016/0301-6226(94)00056-d es_ES
dc.description.references Webster, A. J. F. (1981). The energetic efficiency of metabolism. Proceedings of the Nutrition Society, 40(1), 121-128. doi:10.1079/pns19810017 es_ES
dc.description.references Wesley, R. L., Cibils, A. F., Mulliniks, J. T., Pollak, E. R., Petersen, M. K., & Fredrickson, E. L. (2012). An assessment of behavioural syndromes in rangeland-raised beef cattle. Applied Animal Behaviour Science, 139(3-4), 183-194. doi:10.1016/j.applanim.2012.04.005 es_ES
dc.description.references Wright, I. A., & Russel, A. J. F. (1984). Estimation in vivo of the chemical composition of the bodies of mature cows. Animal Science, 38(1), 33-44. doi:10.1017/s0003356100041325 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem