Mostrar el registro sencillo del ítem
dc.contributor.author | Savietto, Davi | es_ES |
dc.contributor.author | Berry, D.P. | es_ES |
dc.contributor.author | Friggens, N.C. | es_ES |
dc.date.accessioned | 2016-07-21T10:02:59Z | |
dc.date.available | 2016-07-21T10:02:59Z | |
dc.date.issued | 2014-02 | |
dc.identifier.issn | 0021-8812 | |
dc.identifier.uri | http://hdl.handle.net/10251/67958 | |
dc.description.abstract | Residual feed intake (RFI) is the difference between observed and predicted feed intake. It is calculated as the residuals from a multiple regression model of DMI on the various energy expenditures (e.g., maintenance, growth, activity). Residual feed intake is often cited to be indicative of feed efficiency differences among animals. However, explaining a large proportion of the (phenotypic and genetic) interanimal variation in RFI remains difficult. Here we first describe a biological framework for RFI dwelling on similarities between RFI and energy balance. Alternative phenotypic and genetic statistical models are subsequently applied to a dataset of 1,963 growing bulls of 2 British and 3 Continental breeds. The novel aspect of this study was the use of a mixed model framework to quantify the heritable interanimal variation in the partial regression coefficients on the energy expenditure traits within the RFI equation. Heritable genetic variation in individual animal regression coefficients for metabolic live weight existed. No significant genetic variation in animal-level regression coefficients for growth or body fat level, however, existed in the study population. The presence of genetic variation in the partial regression coefficient of maintenance suggests the existence of interanimal variation in maintenance efficiency. However, it could also simply reflect interanimal genetic variation in correlated energy expenditure traits not included in the statistical model. Estimated breeding values for the random regression coefficient could be useful phenotypes in themselves for studies wishing to elucidate the underlying mechanisms governing differences among animals in RFI. | es_ES |
dc.description.sponsorship | Financial support is gratefully acknowledged from the Marie Curie Initial Training Network project Greenhouse Milk funded by the European Commission, Framework 7. Contribution of the data from the Irish Cattle Breeding Federation is also acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Society of Animal Science | es_ES |
dc.relation.ispartof | Journal of Animal Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Beef | es_ES |
dc.subject | Feed efficiency | es_ES |
dc.subject | Genetic | es_ES |
dc.subject | Residual feed intake | es_ES |
dc.subject | Random regression | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | Towards an improved estimation of the biological components of residual feed intake in growing cattle | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2527/jas.2013-6894 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/238562/EU/Developing Genetic Tools to Mitigate the Environmental Impact of Dairy Systems/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Savietto, D.; Berry, D.; Friggens, N. (2014). Towards an improved estimation of the biological components of residual feed intake in growing cattle. Journal of Animal Science. 92(2):467-476. doi:10.2527/jas.2013-6894 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.2527/jas.2013-6894 | es_ES |
dc.description.upvformatpinicio | 467 | es_ES |
dc.description.upvformatpfin | 476 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 92 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 261239 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Arthur, P. F., Archer, J. A., Johnston, D. J., Herd, R. M., Richardson, E. C., & Parnell, P. F. (2001). Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. Journal of Animal Science, 79(11), 2805. doi:10.2527/2001.79112805x | es_ES |
dc.description.references | Barendse, W., Reverter, A., Bunch, R. J., Harrison, B. E., Barris, W., & Thomas, M. B. (2007). A Validated Whole-Genome Association Study of Efficient Food Conversion in Cattle. Genetics, 176(3), 1893-1905. doi:10.1534/genetics.107.072637 | es_ES |
dc.description.references | Basarab, J. A., Price, M. A., Aalhus, J. L., Okine, E. K., Snelling, W. M., & Lyle, K. L. (2003). Residual feed intake and body composition in young growing cattle. Canadian Journal of Animal Science, 83(2), 189-204. doi:10.4141/a02-065 | es_ES |
dc.description.references | Berry, D. P., & Crowley, J. J. (2013). CELL BIOLOGY SYMPOSIUM: Genetics of feed efficiency in dairy and beef cattle1. Journal of Animal Science, 91(4), 1594-1613. doi:10.2527/jas.2012-5862 | es_ES |
dc.description.references | Birnie, J. W., Agnew, R. E., & Gordon, F. J. (2000). The Influence of Body Condition on the Fasting Energy Metabolism of Nonpregnant, Nonlactating Dairy Cows. Journal of Dairy Science, 83(6), 1217-1223. doi:10.3168/jds.s0022-0302(00)74987-3 | es_ES |
dc.description.references | Bottje, W. G., & Carstens, G. E. (2009). Association of mitochondrial function and feed efficiency in poultry and livestock species1. Journal of Animal Science, 87(suppl_14), E48-E63. doi:10.2527/jas.2008-1379 | es_ES |
dc.description.references | Chen, Y., Gondro, C., Quinn, K., Herd, R. M., Parnell, P. F., & Vanselow, B. (2011). Global gene expression profiling reveals genes expressed differentially in cattle with high and low residual feed intake. Animal Genetics, 42(5), 475-490. doi:10.1111/j.1365-2052.2011.02182.x | es_ES |
dc.description.references | Conroy, S. B., Drennan, M. J., Kenny, D. A., & McGee, M. (2009). The relationship of live animal muscular and skeletal scores, ultrasound measurements and carcass classification scores with carcass composition and value in steers. animal, 3(11), 1613-1624. doi:10.1017/s1751731109990395 | es_ES |
dc.description.references | Crowley, J. J., McGee, M., Kenny, D. A., Crews, D. H., Evans, R. D., & Berry, D. P. (2010). Phenotypic and genetic parameters for different measures of feed efficiency in different breeds of Irish performance-tested beef bulls. Journal of Animal Science, 88(3), 885-894. doi:10.2527/jas.2009-1852 | es_ES |
dc.description.references | Durunna, O. N., Plastow, G., Mujibi, F. D. N., Grant, J., Mah, J., Basarab, J. A., … Wang, Z. (2011). Genetic parameters and genotype × environment interaction for feed efficiency traits in steers fed grower and finisher diets1. Journal of Animal Science, 89(11), 3394-3400. doi:10.2527/jas.2010-3516 | es_ES |
dc.description.references | Emmans, G. C. (1994). Effective energy: a concept of energy utilization applied across species. British Journal of Nutrition, 71(6), 801-821. doi:10.1079/bjn19940188 | es_ES |
dc.description.references | Emmans, G. C. (1997). A Method to Predict the Food Intake of Domestic Animals from Birth to Maturity as a Function of Time. Journal of Theoretical Biology, 186(2), 189-199. doi:10.1006/jtbi.1996.0357 | es_ES |
dc.description.references | Friggens, N. C., Ridder, C., & Løvendahl, P. (2007). On the Use of Milk Composition Measures to Predict the Energy Balance of Dairy Cows. Journal of Dairy Science, 90(12), 5453-5467. doi:10.3168/jds.2006-821 | es_ES |
dc.description.references | Grubbs, J. K., Fritchen, A. N., Huff-Lonergan, E., Gabler, N. K., & Lonergan, S. M. (2013). Selection for residual feed intake alters the mitochondria protein profile in pigs. Journal of Proteomics, 80, 334-345. doi:10.1016/j.jprot.2013.01.017 | es_ES |
dc.description.references | Herd, R. M., & Arthur, P. F. (2009). Physiological basis for residual feed intake1. Journal of Animal Science, 87(suppl_14), E64-E71. doi:10.2527/jas.2008-1345 | es_ES |
dc.description.references | Herd, R. M., Oddy, V. H., & Richardson, E. C. (2004). Biological basis for variation in residual feed intake in beef cattle. 1. Review of potential mechanisms. Australian Journal of Experimental Agriculture, 44(5), 423. doi:10.1071/ea02220 | es_ES |
dc.description.references | Hoque, M. A., Arthur, P. F., Hiramoto, K., & Oikawa, T. (2006). Genetic relationship between different measures of feed efficiency and its component traits in Japanese Black (Wagyu) bulls. Livestock Science, 99(2-3), 111-118. doi:10.1016/j.livprodsci.2005.06.004 | es_ES |
dc.description.references | Karisa, B. K., Thomson, J., Wang, Z., Stothard, P., Moore, S. S., & Plastow, G. S. (2013). Candidate genes and single nucleotide polymorphisms associated with variation in residual feed intake in beef cattle1. Journal of Animal Science, 91(8), 3502-3513. doi:10.2527/jas.2012-6170 | es_ES |
dc.description.references | Kirkland, R. ., & Gordon, F. . (1999). The metabolisable energy requirement for maintenance and the efficiency of use of metabolisable energy for lactation and tissue gain in dairy cows offered a straw/concentrate ration. Livestock Production Science, 61(1), 23-31. doi:10.1016/s0301-6226(99)00046-9 | es_ES |
dc.description.references | Kirkland, R. ., Yan, T., Agnew, R. ., & Gordon, F. . (2002). Efficiency of use of body tissue energy for milk production in lactating dairy cows. Livestock Production Science, 73(2-3), 131-138. doi:10.1016/s0301-6226(01)00259-7 | es_ES |
dc.description.references | Kleiber, M. (1947). BODY SIZE AND METABOLIC RATE. Physiological Reviews, 27(4), 511-541. doi:10.1152/physrev.1947.27.4.511 | es_ES |
dc.description.references | Koch, R. M., Swiger, L. A., Chambers, D., & Gregory, K. E. (1963). Efficiency of Feed Use in Beef Cattle. Journal of Animal Science, 22(2), 486-494. doi:10.2527/jas1963.222486x | es_ES |
dc.description.references | Kolath, W. H., Kerley, M. S., Golden, J. W., & Keisler, D. H. (2006). The relationship between mitochondrial function and residual feed intake in Angus steers1. Journal of Animal Science, 84(4), 861-865. doi:10.2527/2006.844861x | es_ES |
dc.description.references | Meyer, J. H., & Garrett, W. N. (1967). Efficiency of Feed Utilization. Journal of Animal Science, 26(3), 638-646. doi:10.2527/jas1967.263638x | es_ES |
dc.description.references | Moe, P. W., Tyrrell, H. F., & Flatt, W. P. (1971). Energetics of Body Tissue Mobilization. Journal of Dairy Science, 54(4), 548-553. doi:10.3168/jds.s0022-0302(71)85886-1 | es_ES |
dc.description.references | Moreau, M., Siebert, S., Buerkert, A., & Schlecht, E. (2009). Use of a tri-axial accelerometer for automated recording and classification of goats’ grazing behaviour. Applied Animal Behaviour Science, 119(3-4), 158-170. doi:10.1016/j.applanim.2009.04.008 | es_ES |
dc.description.references | Nieuwhof, G. J., van Arendonk, J. A. M., Vos, H., & Korver, S. (1992). Genetic relationships between feed intake, efficiency and production traits in growing bulls, growing heifers and lactating heifers. Livestock Production Science, 32(3), 189-202. doi:10.1016/s0301-6226(12)80001-7 | es_ES |
dc.description.references | Nkrumah, J. D., Li, C., Basarab, J. B., Guercio, S., Meng, Y., Murdoch, B., … Moore, S. S. (2004). Association of a single nucleotide polymorphism in the bovine leptin gene with feed intake, feed efficiency, growth, feeding behaviour, carcass quality and body composition. Canadian Journal of Animal Science, 84(2), 211-219. doi:10.4141/a03-033 | es_ES |
dc.description.references | Nkrumah, J. D., Sherman, E. L., Li, C., Marques, E., Crews, D. H., Bartusiak, R., … Moore, S. S. (2007). Primary genome scan to identify putative quantitative trait loci for feedlot growth rate, feed intake, and feed efficiency of beef cattle1. Journal of Animal Science, 85(12), 3170-3181. doi:10.2527/jas.2007-0234 | es_ES |
dc.description.references | Noblet, J., Karege, C., Dubois, S., & van Milgen, J. (1999). Metabolic utilization of energy and maintenance requirements in growing pigs: effects of sex and genotype. Journal of Animal Science, 77(5), 1208. doi:10.2527/1999.7751208x | es_ES |
dc.description.references | Owens, F. N., Gill, D. R., Secrist, D. S., & Coleman, S. W. (1995). Review of some aspects of growth and development of feedlot cattle. Journal of Animal Science, 73(10), 3152. doi:10.2527/1995.73103152x | es_ES |
dc.description.references | Pullar, J. D., & Webster, A. J. F. (1977). The energy cost of fat and protein deposition in the rat. British Journal of Nutrition, 37(3), 355-363. doi:10.1079/bjn19770039 | es_ES |
dc.description.references | Ramseyer, A., Boissy, A., Thierry, B., & Dumont, B. (2009). Individual and social determinants of spontaneous group movements in cattle and sheep. animal, 3(09), 1319-1326. doi:10.1017/s1751731109004790 | es_ES |
dc.description.references | Ramos, M. H., & Kerley, M. S. (2013). Mitochondrial complex I protein differs among residual feed intake phenotype in beef cattle. Journal of Animal Science, 91(7), 3299-3304. doi:10.2527/jas.2012-5589 | es_ES |
dc.description.references | Richardson, E. C., & Herd, R. M. (2004). Biological basis for variation in residual feed intake in beef cattle. 2. Synthesis of results following divergent selection. Australian Journal of Experimental Agriculture, 44(5), 431. doi:10.1071/ea02221 | es_ES |
dc.description.references | Robinson, D. L., & Oddy, V. H. (2004). Genetic parameters for feed efficiency, fatness, muscle area and feeding behaviour of feedlot finished beef cattle. Livestock Production Science, 90(2-3), 255-270. doi:10.1016/j.livprodsci.2004.06.011 | es_ES |
dc.description.references | Schenkel, F. S., Miller, S. P., & Wilton, J. W. (2004). Genetic parameters and breed differences for feed efficiency, growth, and body composition traits of young beef bulls. Canadian Journal of Animal Science, 84(2), 177-185. doi:10.4141/a03-085 | es_ES |
dc.description.references | Sherman, E. L., Nkrumah, J. D., Murdoch, B. M., & Moore, S. S. (2008). Identification of polymorphisms influencing feed intake and efficiency in beef cattle. Animal Genetics, 39(3), 225-231. doi:10.1111/j.1365-2052.2008.01704.x | es_ES |
dc.description.references | Snelling, W. M., Allan, M. F., Keele, J. W., Kuehn, L. A., Thallman, R. M., Bennett, G. L., … Rolfe, K. M. (2011). Partial-genome evaluation of postweaning feed intake and efficiency of crossbred beef cattle1,2. Journal of Animal Science, 89(6), 1731-1741. doi:10.2527/jas.2010-3526 | es_ES |
dc.description.references | Thorup, V. M., Edwards, D., & Friggens, N. C. (2012). On-farm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score. Journal of Dairy Science, 95(4), 1784-1793. doi:10.3168/jds.2011-4631 | es_ES |
dc.description.references | Veerkamp, R. F., Emmans, G. C., Cromie, A. R., & Simm, G. (1995). Variance components for residual feed intake in dairy cows. Livestock Production Science, 41(2), 111-120. doi:10.1016/0301-6226(94)00056-d | es_ES |
dc.description.references | Webster, A. J. F. (1981). The energetic efficiency of metabolism. Proceedings of the Nutrition Society, 40(1), 121-128. doi:10.1079/pns19810017 | es_ES |
dc.description.references | Wesley, R. L., Cibils, A. F., Mulliniks, J. T., Pollak, E. R., Petersen, M. K., & Fredrickson, E. L. (2012). An assessment of behavioural syndromes in rangeland-raised beef cattle. Applied Animal Behaviour Science, 139(3-4), 183-194. doi:10.1016/j.applanim.2012.04.005 | es_ES |
dc.description.references | Wright, I. A., & Russel, A. J. F. (1984). Estimation in vivo of the chemical composition of the bodies of mature cows. Animal Science, 38(1), 33-44. doi:10.1017/s0003356100041325 | es_ES |