- -

INSEL: An in silico method for optimizing and exploring biorecognition assays

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

INSEL: An in silico method for optimizing and exploring biorecognition assays

Mostrar el registro completo del ítem

Avella-Oliver, M.; Giménez Romero, D.; Morais, S.; González Martínez, MÁ.; Bueno, PR.; Puchades, R.; Maquieira Catala, Á. (2013). INSEL: An in silico method for optimizing and exploring biorecognition assays. Chemical Communications. 49(92):10868-10870. https://doi.org/10.1039/c3cc44018d

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68004

Ficheros en el ítem

Metadatos del ítem

Título: INSEL: An in silico method for optimizing and exploring biorecognition assays
Autor: Avella-Oliver, Miquel Giménez Romero, David Morais, Sergi González Martínez, Miguel Ángel Bueno, Paulo Roberto Puchades, Rosa Maquieira Catala, Ángel
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Fecha difusión:
Resumen:
[EN] A practical in silico method for optimizing and exploring biointeraction-based events is developed.
Palabras clave: IMMUNOASSAY
Derechos de uso: Cerrado
Fuente:
Chemical Communications. (issn: 1359-7345 ) (eissn: 1364-548X )
DOI: 10.1039/c3cc44018d
Editorial:
Royal Society of Chemistry
Versión del editor: https://dx.doi.org/10.1039/c3cc44018d
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2010-15943/ES/ESTUDIO DE NUEVAS VIAS DE DESARROLLO DE BIOMEMS PARA SCREENING MASIVO. DEMOSTRACION DE CONCEPTO COMO HERRAMIENTA DE ANALISIS APLICABLE EN "OMICAS"./
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F008/
info:eu-repo/grantAgreement/UPV//PAID-06-12/
Agradecimientos:
This work has been supported by the Spanish Ministry of Economy and Competitiveness FEDER-CTQ2010-15943, Programa FPI and Programa Ramon y Cajal, Generalitat Valenciana (PROMETEO 2010/008) and Universitat Politecncia de ...[+]
Tipo: Artículo

References

Mahon, E., Mouline, Z., Silion, M., Gilles, A., Pinteala, M., & Barboiu, M. (2013). Multilayer lectin–glyconanoparticles architectures for QCM enhanced detection of sugar–protein interaction. Chemical Communications, 49(29), 3004. doi:10.1039/c3cc41074a

Tamayo, J., Kosaka, P. M., Ruz, J. J., San Paulo, Á., & Calleja, M. (2013). Biosensors based on nanomechanical systems. Chem. Soc. Rev., 42(3), 1287-1311. doi:10.1039/c2cs35293a

Chen, X., Lin, Y.-H., Li, J., Lin, L.-S., Chen, G.-N., & Yang, H.-H. (2011). A simple and ultrasensitive electrochemical DNA biosensor based on DNA concatamers. Chemical Communications, 47(44), 12116. doi:10.1039/c1cc15695k [+]
Mahon, E., Mouline, Z., Silion, M., Gilles, A., Pinteala, M., & Barboiu, M. (2013). Multilayer lectin–glyconanoparticles architectures for QCM enhanced detection of sugar–protein interaction. Chemical Communications, 49(29), 3004. doi:10.1039/c3cc41074a

Tamayo, J., Kosaka, P. M., Ruz, J. J., San Paulo, Á., & Calleja, M. (2013). Biosensors based on nanomechanical systems. Chem. Soc. Rev., 42(3), 1287-1311. doi:10.1039/c2cs35293a

Chen, X., Lin, Y.-H., Li, J., Lin, L.-S., Chen, G.-N., & Yang, H.-H. (2011). A simple and ultrasensitive electrochemical DNA biosensor based on DNA concatamers. Chemical Communications, 47(44), 12116. doi:10.1039/c1cc15695k

Katz, C., Levy-Beladev, L., Rotem-Bamberger, S., Rito, T., Rüdiger, S. G. D., & Friedler, A. (2011). Studying protein–protein interactions using peptide arrays. Chemical Society Reviews, 40(5), 2131. doi:10.1039/c0cs00029a

Song, K.-S., Nimse, S. B., Kim, J., Kim, J., Ta, V.-T., Nguyen, V.-T., & Kim, T. (2011). 9G DNAChip: a platform for the efficient detection of proteins. Chemical Communications, 47(27), 7716. doi:10.1039/c1cc12721g

Karoonuthaisiri, N., Charlermroj, R., Uawisetwathana, U., Luxananil, P., Kirtikara, K., & Gajanandana, O. (2009). Development of antibody array for simultaneous detection of foodborne pathogens. Biosensors and Bioelectronics, 24(6), 1641-1648. doi:10.1016/j.bios.2008.08.026

Luo, W., Pla-Roca, M., & Juncker, D. (2011). Taguchi Design-Based Optimization of Sandwich Immunoassay Microarrays for Detecting Breast Cancer Biomarkers. Analytical Chemistry, 83(14), 5767-5774. doi:10.1021/ac103239f

Rubin, A. E., Tummala, S., Both, D. A., Wang, C., & Delaney, E. J. (2006). Emerging Technologies Supporting Chemical Process R&D and Their Increasing Impact on Productivity in the Pharmaceutical Industry. Chemical Reviews, 106(7), 2794-2810. doi:10.1021/cr040674i

Zhang, Q. C., Petrey, D., Deng, L., Qiang, L., Shi, Y., Thu, C. A., … Honig, B. (2012). Structure-based prediction of protein–protein interactions on a genome-wide scale. Nature, 490(7421), 556-560. doi:10.1038/nature11503

White, B. T. (2012). Aipotu: Simulation from Nucleotides to Populations and Back Again. Science, 337(6093), 424-425. doi:10.1126/science.1215105

Bergland, M., Klyczek, K., Lin, C.-C., Lundeberg, M., Tosado-Acevedo, R., Toro, A., … Wolter, B. (2012). Engaging Students in Molecular Biology via Case-Based Learning. Science, 337(6093), 426-427. doi:10.1126/science.1215225

Park, Y., & Marcotte, E. M. (2012). Flaws in evaluation schemes for pair-input computational predictions. Nature Methods, 9(12), 1134-1136. doi:10.1038/nmeth.2259

Shoval, O., Sheftel, H., Shinar, G., Hart, Y., Ramote, O., Mayo, A., … Alon, U. (2012). Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space. Science, 336(6085), 1157-1160. doi:10.1126/science.1217405

Foley, J. O., Nelson, K. E., Mashadi-Hossein, A., Finlayson, B. A., & Yager, P. (2007). Concentration Gradient Immunoassay. 2. Computational Modeling for Analysis and Optimization. Analytical Chemistry, 79(10), 3549-3553. doi:10.1021/ac062350v

Khorshid, M., Hausser, J., Zavolan, M., & van Nimwegen, E. (2013). A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nature Methods, 10(3), 253-255. doi:10.1038/nmeth.2341

Yin, Y., & Zhao, X. S. (2011). Kinetics and Dynamics of DNA Hybridization. Accounts of Chemical Research, 44(11), 1172-1181. doi:10.1021/ar200068j

Morais, S., Tortajada-Genaro, L. A., Arnandis-Chover, T., Puchades, R., & Maquieira, A. (2009). Multiplexed Microimmunoassays on a Digital Versatile Disk. Analytical Chemistry, 81(14), 5646-5654. doi:10.1021/ac900359d

Morais, S., Marco-Molés, R., Puchades, R., & Maquieira, Á. (2006). DNA microarraying on compact disc surfaces. Application to the analysis of single nucleotide polymorphisms in Plum pox virus. Chem. Commun., (22), 2368-2370. doi:10.1039/b600049e

Giménez-Romero, D., González-Martíne, M. A., Bañuls, M.-J., Monzó, I. S., Puchades, R., & Maquieira, Á. (2012). Modeling of the Role of Conformational Dynamics in Kinetics of the Antigen–Antibody Interaction in Heterogeneous Phase. The Journal of Physical Chemistry B, 116(19), 5679-5688. doi:10.1021/jp301953z

Hatch, A., Kamholz, A. E., Hawkins, K. R., Munson, M. S., Schilling, E. A., Weigl, B. H., & Yager, P. (2001). A rapid diffusion immunoassay in a T-sensor. Nature Biotechnology, 19(5), 461-465. doi:10.1038/88135

Tafreshi, N. K., Silva, A., Estrella, V. C., McCardle, T. W., Chen, T., Jeune-Smith, Y., … Morse, D. L. (2013). In Vivoandin SilicoPharmacokinetics and Biodistribution of a Melanocortin Receptor 1 Targeted Agent in Preclinical Models of Melanoma. Molecular Pharmaceutics, 10(8), 3175-3185. doi:10.1021/mp400222j

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem