- -

Recent Positive Selection Has Acted on Genes Encoding Proteins with More Interactions within the Whole Human Interactome

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recent Positive Selection Has Acted on Genes Encoding Proteins with More Interactions within the Whole Human Interactome

Mostrar el registro completo del ítem

Luisi, P.; Alvarez-Ponce, D.; Pybus, M.; Fares Riaño, MA.; Bertranpetit, J.; Laayouni, H. (2015). Recent Positive Selection Has Acted on Genes Encoding Proteins with More Interactions within the Whole Human Interactome. Genome Biology and Evolution. 7(4):1141-1154. https://doi.org/10.1093/gbe/evv055

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68014

Ficheros en el ítem

Metadatos del ítem

Título: Recent Positive Selection Has Acted on Genes Encoding Proteins with More Interactions within the Whole Human Interactome
Autor: Luisi, P Alvarez-Ponce, D Pybus, M Fares Riaño, Mario Ali Bertranpetit, J Laayouni, H
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
Genes vary in their likelihood to undergo adaptive evolution. The genomic factors that determine adaptability, however, remain poorly understood. Genes function in the context of molecular networks, with some occupying ...[+]
Palabras clave: Physical protein interaction , Protein interaction network , Natural selection , Positive selection , Mammals , Humans
Derechos de uso: Reserva de todos los derechos
Fuente:
Genome Biology and Evolution. (issn: 1759-6653 )
DOI: 10.1093/gbe/evv055
Editorial:
Oxford University Press (OUP)
Versión del editor: http://dx.doi.org/10.1093/gbe/evv055
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BFU2013-43726-P/ES/DETECCION Y COMPRENSION DE LAS HUELLAS DE SELECCION NATURAL EN EL GENOMA DE HUMANOS Y SIMIOS./
info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/12/IP/1673/IE/
info:eu-repo/grantAgreement/MINECO//BFU2012-36346/ES/EL PAPEL DE LA DUPLICACION GENICA EN LA COMPLEJIDAD DE SISTEMAS BIOLOGICOS: RE-DIRECCION DE DINAMICAS MUTACIONALES Y ORIGEN DE INNOVACIONES BIOLOGICAS/
info:eu-repo/grantAgreement/MICINN//JCI-2011-11089/ES/JCI-2011-11089/
info:eu-repo/grantAgreement/Generalitat de Catalunya//2009 SGR-1101/ES/2009 SGR-1101/
Agradecimientos:
The authors thankfully acknowledge valuable discussion and corrections from Diego A. Hartasanchez, David A. Hughes, Jessica Nye, and Arcadi Navarro. They thank Gabriel Santpere for his help to compute the McDonald-Krietman ...[+]
Tipo: Artículo

References

(2012). An integrated map of genetic variation from 1,092 human genomes. Nature, 491(7422), 56-65. doi:10.1038/nature11632

Agrafioti, I., Swire, J., Abbott, J., Huntley, D., Butcher, S., & Stumpf, M. P. (2005). BMC Evolutionary Biology, 5(1), 23. doi:10.1186/1471-2148-5-23

Alvarez-Ponce, D. (2012). The relationship between the hierarchical position of proteins in the human signal transduction network and their rate of evolution. BMC Evolutionary Biology, 12(1), 192. doi:10.1186/1471-2148-12-192 [+]
(2012). An integrated map of genetic variation from 1,092 human genomes. Nature, 491(7422), 56-65. doi:10.1038/nature11632

Agrafioti, I., Swire, J., Abbott, J., Huntley, D., Butcher, S., & Stumpf, M. P. (2005). BMC Evolutionary Biology, 5(1), 23. doi:10.1186/1471-2148-5-23

Alvarez-Ponce, D. (2012). The relationship between the hierarchical position of proteins in the human signal transduction network and their rate of evolution. BMC Evolutionary Biology, 12(1), 192. doi:10.1186/1471-2148-12-192

Alvarez-Ponce, D. (2014). Why Proteins Evolve at Different Rates: The Determinants of Proteins’Rates of Evolution. Natural Selection, 126-178. doi:10.1201/b17795-8

Alvarez-Ponce, D., & Fares, M. A. (2012). Evolutionary Rate and Duplicability in the Arabidopsis thaliana Protein–Protein Interaction Network. Genome Biology and Evolution, 4(12), 1263-1274. doi:10.1093/gbe/evs101

Anisimova, M., Bielawski, J. P., & Yang, Z. (2001). Accuracy and Power of the Likelihood Ratio Test in Detecting Adaptive Molecular Evolution. Molecular Biology and Evolution, 18(8), 1585-1592. doi:10.1093/oxfordjournals.molbev.a003945

Bult, C. J., Eppig, J. T., Kadin, J. A., Richardson, J. E., & Blake, J. A. (2007). The Mouse Genome Database (MGD): mouse biology and model systems. Nucleic Acids Research, 36(Database), D724-D728. doi:10.1093/nar/gkm961

Bustamante, C. D., Fledel-Alon, A., Williamson, S., Nielsen, R., Todd Hubisz, M., Glanowski, S., … Clark, A. G. (2005). Natural selection on protein-coding genes in the human genome. Nature, 437(7062), 1153-1157. doi:10.1038/nature04240

Charlesworth, J., & Eyre-Walker, A. (2007). The other side of the nearly neutral theory, evidence of slightly advantageous back-mutations. Proceedings of the National Academy of Sciences, 104(43), 16992-16997. doi:10.1073/pnas.0705456104

Chen, H., Patterson, N., & Reich, D. (2010). Population differentiation as a test for selective sweeps. Genome Research, 20(3), 393-402. doi:10.1101/gr.100545.109

Coop, G., Pickrell, J. K., Novembre, J., Kudaravalli, S., Li, J., Absher, D., … Pritchard, J. K. (2009). The Role of Geography in Human Adaptation. PLoS Genetics, 5(6), e1000500. doi:10.1371/journal.pgen.1000500

Cork, J. M., & Purugganan, M. D. (2004). The evolution of molecular genetic pathways and networks. BioEssays, 26(5), 479-484. doi:10.1002/bies.20026

Cui, Q., Purisima, E. O., & Wang, E. (2009). Protein evolution on a human signaling network. BMC Systems Biology, 3(1), 21. doi:10.1186/1752-0509-3-21

Dall’Olio, G., Laayouni, H., Luisi, P., Sikora, M., Montanucci, L., & Bertranpetit, J. (2012). Distribution of events of positive selection and population differentiation in a metabolic pathway: the case of asparagine N-glycosylation. BMC Evolutionary Biology, 12(1), 98. doi:10.1186/1471-2148-12-98

Dixon, A. L., Liang, L., Moffatt, M. F., Chen, W., Heath, S., Wong, K. C. C., … Cookson, W. O. C. (2007). A genome-wide association study of global gene expression. Nature Genetics, 39(10), 1202-1207. doi:10.1038/ng2109

Do, C. B. (2005). ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Research, 15(2), 330-340. doi:10.1101/gr.2821705

Enard, D., Messer, P. W., & Petrov, D. A. (2014). Genome-wide signals of positive selection in human evolution. Genome Research, 24(6), 885-895. doi:10.1101/gr.164822.113

Fisher, R. A. (1930). The genetical theory of natural selection. doi:10.5962/bhl.title.27468

Flicek, P., Aken, B. L., Ballester, B., Beal, K., Bragin, E., Brent, S., … Fairley, S. (2009). Ensembl’s 10th year. Nucleic Acids Research, 38(suppl_1), D557-D562. doi:10.1093/nar/gkp972

Flowers, J., Sezgin, E., Kumagai, S., Duvernell, D., Matzkin, L., Schmidt, P., & Eanes, W. (2007). Adaptive Evolution of Metabolic Pathways in Drosophila. Molecular Biology and Evolution, 24(6), 1347-1354. doi:10.1093/molbev/msm057

Fraser, H. B. (2013). Gene expression drives local adaptation in humans. Genome Research, 23(7), 1089-1096. doi:10.1101/gr.152710.112

Fraser, H. B. (2002). Evolutionary Rate in the Protein Interaction Network. Science, 296(5568), 750-752. doi:10.1126/science.1068696

Grossman, S. R., Shylakhter, I., Karlsson, E. K., Byrne, E. H., Morales, S., Frieden, G., … Sabeti, P. C. (2010). A Composite of Multiple Signals Distinguishes Causal Variants in Regions of Positive Selection. Science, 327(5967), 883-886. doi:10.1126/science.1183863

Grossman, S. R., Andersen, K. G., Shlyakhter, I., Tabrizi, S., Winnicki, S., Yen, A., … Sabeti, P. C. (2013). Identifying Recent Adaptations in Large-Scale Genomic Data. Cell, 152(4), 703-713. doi:10.1016/j.cell.2013.01.035

Hahn, M. W., Conant, G. C., & Wagner, A. (2004). Molecular Evolution in Large Genetic Networks: Does Connectivity Equal Constraint? Journal of Molecular Evolution, 58(2), 203-211. doi:10.1007/s00239-003-2544-0

Hahn, M. W., & Kern, A. D. (2004). Comparative Genomics of Centrality and Essentiality in Three Eukaryotic Protein-Interaction Networks. Molecular Biology and Evolution, 22(4), 803-806. doi:10.1093/molbev/msi072

Hancock, A. M., Witonsky, D. B., Alkorta-Aranburu, G., Beall, C. M., Gebremedhin, A., Sukernik, R., … Di Rienzo, A. (2011). Adaptations to Climate-Mediated Selective Pressures in Humans. PLoS Genetics, 7(4), e1001375. doi:10.1371/journal.pgen.1001375

Hernandez, R. D., Kelley, J. L., Elyashiv, E., Melton, S. C., Auton, A., … McVean, G. (2011). Classic Selective Sweeps Were Rare in Recent Human Evolution. Science, 331(6019), 920-924. doi:10.1126/science.1198878

Hughes, A. L., & Friedman, R. (2009). More radical amino acid replacements in primates than in rodents: Support for the evolutionary role of effective population size. Gene, 440(1-2), 50-56. doi:10.1016/j.gene.2009.03.012

Iyer, S., Killingback, T., Sundaram, B., & Wang, Z. (2013). Attack Robustness and Centrality of Complex Networks. PLoS ONE, 8(4), e59613. doi:10.1371/journal.pone.0059613

Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., & Barabási, A.-L. (2000). The large-scale organization of metabolic networks. Nature, 407(6804), 651-654. doi:10.1038/35036627

Jordan, I. K., Wolf, Y. I., & Koonin, E. V. (2003). BMC Evolutionary Biology, 3(1), 1. doi:10.1186/1471-2148-3-1

Karolchik, D., Hinrichs, A. S., & Kent, W. J. (2009). The UCSC Genome Browser. Current Protocols in Bioinformatics, 28(1). doi:10.1002/0471250953.bi0104s28

Kelley, J. L. (2006). Genomic signatures of positive selection in humans and the limits of outlier approaches. Genome Research, 16(8), 980-989. doi:10.1101/gr.5157306

Kersey, P. J., Staines, D. M., Lawson, D., Kulesha, E., Derwent, P., Humphrey, J. C., … Birney, E. (2011). Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species. Nucleic Acids Research, 40(D1), D91-D97. doi:10.1093/nar/gkr895

Keshava Prasad, T. S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., … Pandey, A. (2009). Human Protein Reference Database--2009 update. Nucleic Acids Research, 37(Database), D767-D772. doi:10.1093/nar/gkn892

Khurana, E., Fu, Y., Chen, J., & Gerstein, M. (2013). Interpretation of Genomic Variants Using a Unified Biological Network Approach. PLoS Computational Biology, 9(3), e1002886. doi:10.1371/journal.pcbi.1002886

Kim, P. M., Korbel, J. O., & Gerstein, M. B. (2007). Positive selection at the protein network periphery: Evaluation in terms of structural constraints and cellular context. Proceedings of the National Academy of Sciences, 104(51), 20274-20279. doi:10.1073/pnas.0710183104

Kosiol, C., Vinař, T., da Fonseca, R. R., Hubisz, M. J., Bustamante, C. D., Nielsen, R., & Siepel, A. (2008). Patterns of Positive Selection in Six Mammalian Genomes. PLoS Genetics, 4(8), e1000144. doi:10.1371/journal.pgen.1000144

Lappalainen, T., Sammeth, M., Friedländer, M. R., ‘t Hoen, P. A. C., Monlong, J., … Griebel, T. (2013). Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 501(7468), 506-511. doi:10.1038/nature12531

Lemos, B. (2005). Evolution of Proteins and Gene Expression Levels are Coupled in Drosophila and are Independently Associated with mRNA Abundance, Protein Length, and Number of Protein-Protein Interactions. Molecular Biology and Evolution, 22(5), 1345-1354. doi:10.1093/molbev/msi122

Liang, L., Morar, N., Dixon, A. L., Lathrop, G. M., Abecasis, G. R., Moffatt, M. F., & Cookson, W. O. C. (2013). A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines. Genome Research, 23(4), 716-726. doi:10.1101/gr.142521.112

Liao, B.-Y., & Zhang, J. (2008). Null mutations in human and mouse orthologs frequently result in different phenotypes. Proceedings of the National Academy of Sciences, 105(19), 6987-6992. doi:10.1073/pnas.0800387105

Liow, L. H., Van Valen, L., & Stenseth, N. C. (2011). Red Queen: from populations to taxa and communities. Trends in Ecology & Evolution, 26(7), 349-358. doi:10.1016/j.tree.2011.03.016

Lovell, S. C., & Robertson, D. L. (2010). An Integrated View of Molecular Coevolution in Protein-Protein Interactions. Molecular Biology and Evolution, 27(11), 2567-2575. doi:10.1093/molbev/msq144

Luisi, P., Alvarez-Ponce, D., Dall’Olio, G. M., Sikora, M., Bertranpetit, J., & Laayouni, H. (2011). Network-Level and Population Genetics Analysis of the Insulin/TOR Signal Transduction Pathway Across Human Populations. Molecular Biology and Evolution, 29(5), 1379-1392. doi:10.1093/molbev/msr298

MacArthur, D. G., Balasubramanian, S., Frankish, A., Huang, N., Morris, J., Walter, K., … Montgomery, S. B. (2012). A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes. Science, 335(6070), 823-828. doi:10.1126/science.1215040

Martin, G. (2014). Fisher’s Geometrical Model Emerges as a Property of Complex Integrated Phenotypic Networks. Genetics, 197(1), 237-255. doi:10.1534/genetics.113.160325

McDonald, J. H., & Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in Drosophila. Nature, 351(6328), 652-654. doi:10.1038/351652a0

Mi, H., Muruganujan, A., & Thomas, P. D. (2012). PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Research, 41(D1), D377-D386. doi:10.1093/nar/gks1118

Montanucci, L., Laayouni, H., & Bertranpetit, J. (2014). The Network Framework of Molecular Evolution. Natural Selection, 179-210. doi:10.1201/b17795-9

Morar, N., Cookson, W. O. C. M., Harper, J. I., & Moffatt, M. F. (2007). Filaggrin Mutations in Children with Severe Atopic Dermatitis. Journal of Investigative Dermatology, 127(7), 1667-1672. doi:10.1038/sj.jid.5700739

Olson-Manning, C. F., Lee, C.-R., Rausher, M. D., & Mitchell-Olds, T. (2012). Evolution of Flux Control in the Glucosinolate Pathway in Arabidopsis thaliana. Molecular Biology and Evolution, 30(1), 14-23. doi:10.1093/molbev/mss204

Olson-Manning, C. F., Wagner, M. R., & Mitchell-Olds, T. (2012). Adaptive evolution: evaluating empirical support for theoretical predictions. Nature Reviews Genetics, 13(12), 867-877. doi:10.1038/nrg3322

Orr, H. A. (2005). The genetic theory of adaptation: a brief history. Nature Reviews Genetics, 6(2), 119-127. doi:10.1038/nrg1523

Pérez-Bercoff, Å., Hudson, C. M., & Conant, G. C. (2013). A Conserved Mammalian Protein Interaction Network. PLoS ONE, 8(1), e52581. doi:10.1371/journal.pone.0052581

Pickrell, J. K., Marioni, J. C., Pai, A. A., Degner, J. F., Engelhardt, B. E., Nkadori, E., … Pritchard, J. K. (2010). Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature, 464(7289), 768-772. doi:10.1038/nature08872

Pritchard, J. K., Pickrell, J. K., & Coop, G. (2010). The Genetics of Human Adaptation: Hard Sweeps, Soft Sweeps, and Polygenic Adaptation. Current Biology, 20(4), R208-R215. doi:10.1016/j.cub.2009.11.055

Pybus, M., Dall’Olio, G. M., Luisi, P., Uzkudun, M., Carreño-Torres, A., Pavlidis, P., … Engelken, J. (2013). 1000 Genomes Selection Browser 1.0: a genome browser dedicated to signatures of natural selection in modern humans. Nucleic Acids Research, 42(D1), D903-D909. doi:10.1093/nar/gkt1188

Rausher, M. D. (2012). THE EVOLUTION OF GENES IN BRANCHED METABOLIC PATHWAYS. Evolution, 67(1), 34-48. doi:10.1111/j.1558-5646.2012.01771.x

Scheinfeldt, L. B., Biswas, S., Madeoy, J., Connelly, C. F., Schadt, E. E., & Akey, J. M. (2009). Population Genomic Analysis of ALMS1 in Humans Reveals a Surprisingly Complex Evolutionary History. Molecular Biology and Evolution, 26(6), 1357-1367. doi:10.1093/molbev/msp045

Stark, C., Breitkreutz, B.-J., Chatr-aryamontri, A., Boucher, L., Oughtred, R., Livstone, M. S., … Tyers, M. (2010). The BioGRID Interaction Database: 2011 update. Nucleic Acids Research, 39(Database), D698-D704. doi:10.1093/nar/gkq1116

Subramanian, S. (2013). Significance of Population Size on the Fixation of Nonsynonymous Mutations in Genes Under Varying Levels of Selection Pressure. Genetics, 193(3), 995-1002. doi:10.1534/genetics.112.147900

Talavera, G., & Castresana, J. (2007). Improvement of Phylogenies after Removing Divergent and Ambiguously Aligned Blocks from Protein Sequence Alignments. Systematic Biology, 56(4), 564-577. doi:10.1080/10635150701472164

Teshima, K. M. (2006). How reliable are empirical genomic scans for selective sweeps? Genome Research, 16(6), 702-712. doi:10.1101/gr.5105206

Vitkup, D., Kharchenko, P., & Wagner, A. (2006). Genome Biology, 7(5), R39. doi:10.1186/gb-2006-7-5-r39

Voight, B. F., Kudaravalli, S., Wen, X., & Pritchard, J. K. (2006). A Map of Recent Positive Selection in the Human Genome. PLoS Biology, 4(3), e72. doi:10.1371/journal.pbio.0040072

Wagner, A. (2012). Metabolic Networks and Their Evolution. Advances in Experimental Medicine and Biology, 29-52. doi:10.1007/978-1-4614-3567-9_2

Wright, K. M., & Rausher, M. D. (2009). The Evolution of Control and Distribution of Adaptive Mutations in a Metabolic Pathway. Genetics, 184(2), 483-502. doi:10.1534/genetics.109.110411

Yang, Z. (2005). Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection. Molecular Biology and Evolution, 22(4), 1107-1118. doi:10.1093/molbev/msi097

Zeng, K., Shi, S., & Wu, C.-I. (2007). Compound Tests for the Detection of Hitchhiking Under Positive Selection. Molecular Biology and Evolution, 24(8), 1898-1908. doi:10.1093/molbev/msm119

Zhai, W., Nielsen, R., & Slatkin, M. (2008). An Investigation of the Statistical Power of Neutrality Tests Based on Comparative and Population Genetic Data. Molecular Biology and Evolution, 26(2), 273-283. doi:10.1093/molbev/msn231

Zhang, J. (2005). Significant Impact of Protein Dispensability on the Instantaneous Rate of Protein Evolution. Molecular Biology and Evolution, 22(4), 1147-1155. doi:10.1093/molbev/msi101

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem