- -

Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich domain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich domain

Mostrar el registro completo del ítem

Hernández-Sánchez, I.; Maruri-López, I.; Ferrando Monleón, AR.; Carbonell Gisbert, J.; Graether, S.; Jimenez-Bremont, J. (2015). Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich domain. Frontiers in Plant Science. 6(702):1-8. https://doi.org/10.3389/fpls.2015.00702

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68027

Ficheros en el ítem

Metadatos del ítem

Título: Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich domain
Autor: Hernández-Sánchez, IE Maruri-López, I Ferrando Monleón, Alejandro Ramón Carbonell Gisbert, Juan Graether, SP Jimenez-Bremont, JF
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in ...[+]
Palabras clave: Dehydrin , BiFC , Homodimer , Histidine-rich motif , Nuclear/cytoplasmic localization
Derechos de uso: Reserva de todos los derechos
Fuente:
Frontiers in Plant Science. (issn: 1664-462X )
DOI: 10.3389/fpls.2015.00702
Editorial:
Frontiers Media
Versión del editor: http://dx.doi.org/10.3389/fpls.2015.00702
Código del Proyecto:
info:eu-repo/grantAgreement/CONACYT//CB-2013-221075/MX/Caracterización de genes que codifican para una nueva familia de proteínas duf1399 involucradas en el desarrollo y la respuesta al estrés abiótico en arabidopsis thaliana (2014)/
info:eu-repo/grantAgreement/MICINN//BIO2011-23828/ES/CONTROL DE LA DIFERENCIACION DEL XILEMA POR LOS FACTORES DE TRANSCRIPCION AJAX/
Agradecimientos:
This work was supported by the CONACYT (Investigacion Ciencia Basica CB-2013-221075) funding to JJ, NSERC Discovery Grant to SG, and funding from the Spanish MICINN/MINECO (BIO2011-23828) to AF and MICINN (BIO2011-23828) ...[+]
Tipo: Artículo

References

Alsheikh, M. K., Heyen, B. J., & Randall, S. K. (2003). Ion Binding Properties of the Dehydrin ERD14 Are Dependent upon Phosphorylation. Journal of Biological Chemistry, 278(42), 40882-40889. doi:10.1074/jbc.m307151200

Belda-Palazón, B., Ruiz, L., Martí, E., Tárraga, S., Tiburcio, A. F., Culiáñez, F., … Ferrando, A. (2012). Aminopropyltransferases Involved in Polyamine Biosynthesis Localize Preferentially in the Nucleus of Plant Cells. PLoS ONE, 7(10), e46907. doi:10.1371/journal.pone.0046907

Briesemeister, S., Rahnenf�hrer, J., & Kohlbacher, O. (2010). YLoc—an interpretable web server for predicting subcellular localization. Nucleic Acids Research, 38(suppl_2), W497-W502. doi:10.1093/nar/gkq477 [+]
Alsheikh, M. K., Heyen, B. J., & Randall, S. K. (2003). Ion Binding Properties of the Dehydrin ERD14 Are Dependent upon Phosphorylation. Journal of Biological Chemistry, 278(42), 40882-40889. doi:10.1074/jbc.m307151200

Belda-Palazón, B., Ruiz, L., Martí, E., Tárraga, S., Tiburcio, A. F., Culiáñez, F., … Ferrando, A. (2012). Aminopropyltransferases Involved in Polyamine Biosynthesis Localize Preferentially in the Nucleus of Plant Cells. PLoS ONE, 7(10), e46907. doi:10.1371/journal.pone.0046907

Briesemeister, S., Rahnenf�hrer, J., & Kohlbacher, O. (2010). YLoc—an interpretable web server for predicting subcellular localization. Nucleic Acids Research, 38(suppl_2), W497-W502. doi:10.1093/nar/gkq477

Carjuzaa, P., Castellión, M., Distéfano, A. J., del Vas, M., & Maldonado, S. (2008). Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos. Protoplasma, 233(1-2), 149-156. doi:10.1007/s00709-008-0300-4

Close, T. J. (1996). Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiologia Plantarum, 97(4), 795-803. doi:10.1111/j.1399-3054.1996.tb00546.x

Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979

Ferrando, A. (2001). Detection of in vivo protein interactions between Snf1-related kinase subunits with intron-tagged epitope-labelling in plants cells. Nucleic Acids Research, 29(17), 3685-3693. doi:10.1093/nar/29.17.3685

Goday, A., Jensen, A. B., Culiáñez-Macià, F. A., Mar Albà, M., Figueras, M., Serratosa, J., … Pagès, M. (1994). The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. The Plant Cell, 6(3), 351-360. doi:10.1105/tpc.6.3.351

Godoy, J. A., Lunar, R., Torres-Schumann, S., Moreno, J., Rodrigo, R. M., & Pintor-Toro, J. A. (1994). Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Molecular Biology, 26(6), 1921-1934. doi:10.1007/bf00019503

Graether, S. P., & Boddington, K. F. (2014). Disorder and function: a review of the dehydrin protein family. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00576

Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., & Masmoudi, K. (2011). Plant dehydrins and stress tolerance. Plant Signaling & Behavior, 6(10), 1503-1509. doi:10.4161/psb.6.10.17088

Hara, M. (2010). The multifunctionality of dehydrins: An overview. Plant Signaling & Behavior, 5(5), 503-508. doi:10.4161/psb.11085

Hara, M., Fujinaga, M., & Kuboi, T. (2005). Metal binding by citrus dehydrin with histidine-rich domains. Journal of Experimental Botany, 56(420), 2695-2703. doi:10.1093/jxb/eri262

Hara, M., Kondo, M., & Kato, T. (2013). A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical-reducing activities. Journal of Experimental Botany, 64(6), 1615-1624. doi:10.1093/jxb/ert016

HARA, M., SHINODA, Y., TANAKA, Y., & KUBOI, T. (2009). DNA binding of citrus dehydrin promoted by zinc ion. Plant, Cell & Environment, 32(5), 532-541. doi:10.1111/j.1365-3040.2009.01947.x

Hara, M., Terashima, S., & Kuboi, T. (2001). Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. Journal of Plant Physiology, 158(10), 1333-1339. doi:10.1078/0176-1617-00600

Hernández-Sánchez, I. E., Martynowicz, D. M., Rodríguez-Hernández, A. A., Pérez-Morales, M. B., Graether, S. P., & Jiménez-Bremont, J. F. (2014). A dehydrin-dehydrin interaction: the case of SK3 from Opuntia streptacantha. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00520

Heyen, B. J., Alsheikh, M. K., Smith, E. A., Torvik, C. F., Seals, D. F., & Randall, S. K. (2002). The Calcium-Binding Activity of a Vacuole-Associated, Dehydrin-Like Protein Is Regulated by Phosphorylation. Plant Physiology, 130(2), 675-687. doi:10.1104/pp.002550

Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S., & Sarhan, F. (1995). Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. The Plant Journal, 8(4), 583-593. doi:10.1046/j.1365-313x.1995.8040583.x

Hwang, I. S., Choi, D. S., Kim, N. H., Kim, D. S., & Hwang, B. K. (2013). The pepper cysteine/histidine-rich DC1 domain protein CaDC1 binds both RNA and DNA and is required for plant cell death and defense response. New Phytologist, 201(2), 518-530. doi:10.1111/nph.12521

Jensen, A. B., Goday, A., Figueras, M., Jessop, A. C., & Pagès, M. (1998). Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. The Plant Journal, 13(5), 691-697. doi:10.1046/j.1365-313x.1998.00069.x

Jiménez-Bremont, J. F., Maruri-López, I., Ochoa-Alfaro, A. E., Delgado-Sánchez, P., Bravo, J., & Rodríguez-Kessler, M. (2012). LEA Gene Introns: is the Intron of Dehydrin Genes a Characteristic of the Serine-Segment? Plant Molecular Biology Reporter, 31(1), 128-140. doi:10.1007/s11105-012-0483-x

Koag, M.-C., Wilkens, S., Fenton, R. D., Resnik, J., Vo, E., & Close, T. J. (2009). The K-Segment of Maize DHN1 Mediates Binding to Anionic Phospholipid Vesicles and Concomitant Structural Changes. Plant Physiology, 150(3), 1503-1514. doi:10.1104/pp.109.136697

Kosugi, S., Hasebe, M., Matsumura, N., Takashima, H., Miyamoto-Sato, E., Tomita, M., & Yanagawa, H. (2008). Six Classes of Nuclear Localization Signals Specific to Different Binding Grooves of Importin α. Journal of Biological Chemistry, 284(1), 478-485. doi:10.1074/jbc.m807017200

Mueller, J. K., Heckathorn, S. A., & Fernando, D. (2003). Identification of a Chloroplast Dehydrin in Leaves of Mature Plants. International Journal of Plant Sciences, 164(4), 535-542. doi:10.1086/375376

Nylander, M., Svensson, J., Palva, E. T., & Welin, B. V. (2001). Plant Molecular Biology, 45(3), 263-279. doi:10.1023/a:1006469128280

Ochoa-Alfaro, A. E., Rodríguez-Kessler, M., Pérez-Morales, M. B., Delgado-Sánchez, P., Cuevas-Velazquez, C. L., Gómez-Anduro, G., & Jiménez-Bremont, J. F. (2011). Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library. Planta, 235(3), 565-578. doi:10.1007/s00425-011-1531-8

Puhakainen, T., Hess, M. W., Mäkelä, P., Svensson, J., Heino, P., & Palva, E. T. (2004). Overexpression of Multiple Dehydrin Genes Enhances Tolerance to Freezing Stress in Arabidopsis. Plant Molecular Biology, 54(5), 743-753. doi:10.1023/b:plan.0000040903.66496.a4

Rahman, L. N., McKay, F., Giuliani, M., Quirk, A., Moffatt, B. A., Harauz, G., & Dutcher, J. R. (2013). Interactions of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes at cold and ambient temperatures—Surface morphology and single-molecule force measurements show phase separation, and reveal tertiary and quaternary associations. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1828(3), 967-980. doi:10.1016/j.bbamem.2012.11.031

Ricardi, M. M., Guaimas, F. F., González, R. M., Burrieza, H. P., López-Fernández, M. P., Jares-Erijman, E. A., … Iusem, N. D. (2012). Nuclear Import and Dimerization of Tomato ASR1, a Water Stress-Inducible Protein Exclusive to Plants. PLoS ONE, 7(8), e41008. doi:10.1371/journal.pone.0041008

Riera, M., Figueras, M., Lopez, C., Goday, A., & Pages, M. (2004). Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proceedings of the National Academy of Sciences, 101(26), 9879-9884. doi:10.1073/pnas.0306154101

Rorat, T. (2006). Plant dehydrins — Tissue location, structure and function. Cellular and Molecular Biology Letters, 11(4). doi:10.2478/s11658-006-0044-0

Tompa, P., & Kovacs, D. (2010). Intrinsically disordered chaperones in plants and animalsThis paper is one of a selection of papers published in this special issue entitled «Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases» and has undergone the Journal’s usual peer review process. Biochemistry and Cell Biology, 88(2), 167-174. doi:10.1139/o09-163

Voinnet, O., Rivas, S., Mestre, P., & Baulcombe, D. (2003). Retracted: An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant Journal, 33(5), 949-956. doi:10.1046/j.1365-313x.2003.01676.x

Wisniewski, M., Webb, R., Balsamo, R., Close, T. J., Yu, X.-M., & Griffith, M. (1999). Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica). Physiologia Plantarum, 105(4), 600-608. doi:10.1034/j.1399-3054.1999.105402.x

Xie, C., Zhang, R., Qu, Y., Miao, Z., Zhang, Y., Shen, X., … Dong, J. (2012). Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density. New Phytologist, 195(1), 124-135. doi:10.1111/j.1469-8137.2012.04136.x

Xu, J., Zhang, Y. X., Wei, W., Han, L., Guan, Z. Q., Wang, Z., & Chai, T. Y. (2007). BjDHNs Confer Heavy-metal Tolerance in Plants. Molecular Biotechnology, 38(2), 91-98. doi:10.1007/s12033-007-9005-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem