- -

Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment

Show full item record

Lorente, D.; Aleixos Borrás, MN.; Gómez Sanchís, J.; Cubero, S.; García Navarrete, OL.; Blasco Ivars, J. (2011). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food and Bioprocess Technology. 5(4):1121-1142. doi:10.1007/s11947-011-0725-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68034

Files in this item

Item Metadata

Title: Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària
Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Issued date:
Abstract:
[EN] Hyperspectral imaging systems are starting to be used as a scientific tool for food quality assessment. A typical hyperspectral image is composed of a set of a relatively wide range of monochromatic images corresponding ...[+]
Subjects: Computer vision , Fruits , Hyperspectral imaging , Image analysis , Multispectral imaging , Non-destructive inspection , Quality , Vegetables , Data sets , Degree of correlations , External features , Food quality , Fruit and vegetables , High-dimensional , High-speed process , Hyper-spectral images , Hyperspectral imaging systems , Monochromatic images , Multi-spectral , Non destructive , Non destructive inspection , Quality assessment , Quality features , Redundant informations , Scientific tool , Standard protocols , Statistical techniques , Visible imaging , Image quality , Independent component analysis
Copyrigths: Reserva de todos los derechos
Source:
Food and Bioprocess Technology. (issn: 1935-5130 ) (eissn: 1935-5149 )
DOI: 10.1007/s11947-011-0725-1
Publisher:
Springer Verlag
Publisher version: http://dx.doi.org/10.1007/s11947-011-0725-1
Thanks:
This work was partially funded by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria de Espana (INIA) through research project RTA2009-00118-C02-01 and by the Ministerio de Ciencia e Innovacion de ...[+]
Type: Artículo

References

Aleixos, N., Blasco, J., Navarrón, F., & Moltó, E. (2002). Multispectral inspection of citrus in real-time using machine vision and digital signal processors. Computers and Electronics in Agriculture, 33(2), 121–137.

Al-Mallahi, A., Kataoka, T., & Okamoto, H. (2008). Discrimination between potato tubers and clods by detecting the significant wavebands. Biosystems Engineering, 100(3), 329–337.

Ariana, D. P., & Lu, R. (2010a). Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles. Computers and Electronics in Agriculture, 74(1), 137–144. [+]
Aleixos, N., Blasco, J., Navarrón, F., & Moltó, E. (2002). Multispectral inspection of citrus in real-time using machine vision and digital signal processors. Computers and Electronics in Agriculture, 33(2), 121–137.

Al-Mallahi, A., Kataoka, T., & Okamoto, H. (2008). Discrimination between potato tubers and clods by detecting the significant wavebands. Biosystems Engineering, 100(3), 329–337.

Ariana, D. P., & Lu, R. (2010a). Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles. Computers and Electronics in Agriculture, 74(1), 137–144.

Ariana, D. P., & Lu, R. (2010b). Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging. Journal of Food Engineering, 96(4), 583–590.

Ariana, D. P., Guyer, D. E., & Shrestha, B. (2006). Integrating multispectral reflectance and fluorescence imaging for defect detection on apples. Computers and Electronics in Agriculture, 50, 148–161.

Bei, L., Dennis, G. I., Miller, H. M., Spaine, T. W., & Carnahan, J. W. (2004). Acousto-optic tunable filters: Fundamentals and applications as applied to chemical analysis techniques. Progress in Quantum Electronics, 28(2), 67–87.

Bennedsen, B. S., & Peterson, D. L. (2005). Performance of a system for apple surface defect identification in near-infrared images. Biosystems Engineering, 90(4), 419–431.

Bennedsen, B. S., Peterson, D. L., & Tabb, A. (2007). Identifying apple surface defects using principal components analysis and artificial neural networks. Transactions of the ASABE, 50(6), 2257–2265.

Blasco, J., Aleixos, N., Gómez, J., & Moltó, E. (2007). Citrus sorting by identification of the most common defects using multispectral computer vision. Journal of Food Engineering, 83(3), 384–393.

Blasco, J., Aleixos, N., Gómez-Sanchis, J., & Moltó, E. (2009). Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features. Biosystems Engineering, 103, 137–145.

Cayuela, J. A., García-Martos, J. M., & Caliani, N. (2009). NIR prediction of fruit moisture, free acidity and oil content in intact olives. Grasas y Aceites, 60(2), 194–202.

Chang, C. (1976). Acousto-optic devices and applications. IEEE Transactions on Sonics Ultrasound, 23(1), 2–22.

Chang, C. (2003). Hyperspectral imaging: Techniques for spectral detection and classification. New York: Springer.

Cheng, X., Chen, Y., Tao, Y., Wang, C., Kim, M. S., & Lefcourt, A. (2004). A novel integrated PCA and FLD method on hyperspectral image feature extraction for cucumber chilling damage inspection. Transactions of ASAE, 47(4), 1313–1320.

Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sun, D.-W., & Menesatti, P. (2011). Shape analysis of agricultural products: A review of recent research advances and potential application to computer vision. Food and Bioprocess Technology, 4, 673–692.

Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487–504.

Du, C.-J., & Sun, D.-W. (2006). Learning techniques used in computer vision for food quality evaluation: a review. Journal of Food Engineering, 72, 39–55.

Du, C.-J., & Sun, D.-W. (2009). Retrospective shading correlation of confocal laser scanning microscopy beef images for three-dimensional visualization. Food and Bioprocess Technology, 2, 167–176.

Egmont-Petersen, M., de Ridder, D., & Handels, H. (2002). Image processing with neural networks—A review. Pattern Recognition, 35(10), 2279–2301.

ElMasry, G., Wang, N., ElSayed, A., & Ngadi, M. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering, 81, 98–107.

ElMasry, G., Nassar, A., Wang, N., & Vigneault, C. (2008a). Spectral methods for measuring quality changes of fresh fruits and vegetables. Stewart Postharvest Review, 4, 1–13.

ElMasry, G., Wang, N., Vigneault, C., Qiao, J., & ElSayed, A. (2008b). Early detection of apple bruises on different background colors using hyperspectral imaging. LWT, 41, 337–345.

ElMasry, G., Wang, N., & Vigneault, C. (2009). Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology, 52, 1–8.

Erives, H., & Fitzgerald, G. J. (2005). Automated registration of hyperspectral images for precision agriculture. Computers and Electronics in Agriculture, 47(2), 103–119.

Farrera-Rebollo, R. R., Salgado-Cruz, M. P., Chanona-Pérez, J., Gutiérrez-López, G. F., Alamilla-Beltrán, L., & Calderón-Domínguez, G. (2011). Evaluation of image analysis tools for characterization of sweet bread crumb structure. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0513-y .

Fernandes, A. M., Oliveira, P., Moura, J. P., Oliveira, A. A., Falco, V., Correia, M. J., et al. (2011). Determination of anthocyanin concentration in whole grape skins using hyperspectral imaging and adaptive boosting neural networks. Journal of Food Engineering, 105(2), 216–226.

Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179–188.

Geladi, P. L. M. (2007). Calibration standards and image calibration. In H. F. Grahn & P. Geladi (Eds.), Techniques and applications of hyperspectral image analysis (pp. 203–220). Chichester: Wiley.

Gómez-Sanchis, J., Camps-Valls, G., Moltó, E., Gómez-Chova, L., Aleixos, N., & Blasco, J. (2008a). Segmentation of hyperspectral images for the detection of rotten mandarins. Lecture Notes in Computer Science, 5112, 1071–1080.

Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Moltó, E., et al. (2008b). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80–86.

Gómez-Sanchis, J., Moltó, E., Camps-Valls, G., Gómez-Chova, L., Aleixos, N., & Blasco, J. (2008c). Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits. Journal of Food Engineering, 85(2), 191–200.

Gómez-Sanchis, J., Martín-Guerrero, J. D., Soria-Olivas, E., Martínez-Sober, M., Magdalena-Benedito, R., & Blasco, J. (2012). Detecting rottenness caused by Penicillium in citrus fruits using machine learning techniques. Expert Systems with Applications, 39(1), 780–785.

Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing (3rd ed.). Upper Saddle River: Prentice Hall.

Gowen, A. A., O’Donnell, C. P., Cullen, P. J., Downey, G., & Frias, J. M. (2007). Hyperspectral imaging—An emerging process analytical tool. Trends in Food Science & Technology, 18(12), 590–598.

Gowen, A. A., O’Donnell, C. P., Taghizadeh, M., Cullen, P. J., Frias, J. M., & Downey, G. (2008). Hyperspectral imaging combined with principal component analysis for bruise damage detection on white mushrooms (Agaricus bisporus). Journal of Chemometrics, 22(3–4), 259–267.

Gowen, A. A., Taghizadeh, M., & O’Donnell, C. P. (2009a). Identification of mushrooms subjected to freeze damage using hyperspectral imaging. Journal of Food Engineering, 93, 7–12.

Gowen, A. A., Tsenkova, R., Esquerre, C., Downey, G., & O’Donnell, P. D. (2009b). Use of near infrared hyperspectral imaging to identify water matrix co-ordinates in mushrooms (Agaricus bisporus) subjected to mechanical vibration. Journal of Near Infrared Spectroscopy, 17(6), 363–371.

Grahn, H. F., & Geladi, P. (2007). Techniques and applications of hyperspectral image analysis. Chichester: Wiley.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.

Hetch, E. (2001). Optics (4th ed.). Reading: Addison Wesley.

Huang, Y., Kangas, L. J., & Rasco, B. A. (2007). Applications of artificial neural networks (ANNs) in food science. Critical Reviews in Food Science and Nutrition, 47(2), 113–126.

Jiménez, A., Beltrán, G., Aguilera, M. P., & Uceda, M. (2008). A sensor-software based on artificial neural network for the optimization of olive oil elaboration process. Sensors and Actuators B, 129, 985–990.

Jobson, J. D. (1992). Applied multivariate data analysis: Categorical and multivariate methods, vol. Berlin: Springer.

Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). New York: Springer.

Kalkan, H., Beriat, P., Yardimci, Y., & Pearson, T. C. (2011). Detection of contaminated hazelnuts and ground red chili pepper flakes by multispectral imaging. Computers and Electronics in Agriculture, 77(1), 28–34.

Karimi, Y., Maftoonazad, N., Ramaswamy, H. S., Prasher, S. O., & Marcotte, M. (2009). Application of hyperspectral technique for color classification avocados subjected to different treatments. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0292-x .

Kays, S. J. (1999). Preharvest factors affecting appearance. Postharvest Biology and Technology, 15, 233–247.

Kim, M. S., Chen, Y. R., & Mehl, P. M. (2001). Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of ASAE, 44(3), 721–729.

Kleynen, O., Leemans, V., & Destain, M. F. (2005). Development of a multi-spectral vision system for the detection of defects on apples. Journal of Food Engineering, 69, 41–49.

Lee, J. A., & Verleysen, M. (2007). Nonlinear dimensionality reduction. New York: Springer.

Lefcout, A. M., Kim, M. S., Chen, Y.-R., & Kang, B. (2006). Systematic approach for using hyperspectral imaging data to develop multispectral imagining systems: Detection of feces on apples. Computers and Electronics in Agriculture, 54, 22–35.

Li, J., Rao, X., & Ying, Y. (2011). Detection of common defects on oranges using hyperspectral reflectance imaging. Computers and Electronics in Agriculture, 78(1), 38–48.

Liu, Y., Chen, Y. R., Wang, C. Y., Chan, D. E., & Kim, M. S. (2005). Development of a simple algorithm for the detection of chilling injury in cucumbers from visible/near-infrared hyperspectral imaging. Applied Spectroscopy, 59(1), 78–85.

Liu, Y., Chen, Y. R., Wang, C. Y., Chan, D. E., & Kim, M. S. (2006). Development of hyperspectral imaging technique for the detection of chilling injury in cucumbers: Spectral and image analysis. Applied Engineering in Agriculture, 22(1), 101–111.

Lleó, L., Barreiro, P., Ruiz-Altisent, M., & Herrero, A. (2009). Multispectral images of peach related to firmness and maturity at harvest. Journal of Food Engineering, 93(2), 229–235.

Lleó, L., Roger, J. M., Herrero-Langreo, A., Diezma-Iglesias, B., & Barreiro, P. (2011). Comparison of multispectral indexes extracted from hyperspectral images for the assessment of fruit ripening. Journal of Food Engineering, 104(4), 612–620.

Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., & Blasco, J. (2011). Selection of optimal wavelength features for decay detection in citrus fruit using the ROC curve and neural networks. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0737-x .

Lu, R. (2003). Detection of bruises on apples using near-infrared hyperspectral imaging. Transactions of the ASAE, 46, 523–530.

Lu, R., & Peng, Y. (2006). Hyperspectral scattering for assessing peach fruit firmness. Biosystems Engineering, 93(2), 161–171.

Lunadei, L., Diezma, B., Lleó, L., Ruiz-Garcia, L., Cantalapiedra, S., & Ruiz-Altisent, M. (2012). Monitoring of fresh-cut spinach leaves through a multispectral vision system. Postharvest Biology and Technology, 63, 74–84.

Magwaza, L. S., Opara, U. L., Nieuwoudt, H., Cronje, P. J. R., Saeys, W., & Nicolaï, B. (2011). NIR spectroscopy applications for internal and external quality analysis of citrus fruit—A review. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0697-1 .

Manickavasagan, A., Jayas, D. S., White, N. D. G., & Paliwal, J. (2010). Wheat class identification using thermal imaging. Food and Bioprocess Technology, 3(3), 450–460.

Martinez, A. M., & Kak, A. C. (2004). PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), 228–233.

Martínez-Usó, A., Pla, F., & García-Sevilla, P. (2005). Multispectral iSegmentation by energy minimization for fruit quality estimation. In: Pattern Recognition and Image Analysis: Second Iberian Conference (IbPRIA 2005), Estoril, Portugal, June 7–9, 2005. LNCS, 3523, 689–696.

Mather, P. M. (1998). Computer processing of remotely sensed images. Chichester: Wiley.

McLachlan, G. J. (2004). Discriminant analysis and statistical pattern recognition. New Jersey: Wiley-Interscience.

Mehl, P. M., Chen, Y. R., Kim, M. S., & Chan, D. E. (2004). Development of hyperspectral imaging technique for detection of apple surface defects and contaminations. Journal of Food Engineering, 61, 67–81.

Mendoza, F., Lu, R., Ariana, D., Cen, H., & Bailey, B. (2011). Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 62(2), 149–160.

Menesatti, P., Zanella, A., D’Andrea, S., Costa, C., Paglia, G., & Pallottino, F. (2009). Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of apples. Food and Bioprocess Technology, 2, 308–314.

Nguyen Do Trong, N., Tsuta, M., Nicolaï, B. M., De Baerdemaeker, J., & Saeys, W. (2011). Prediction of optimal cooking time for boiled potatoes by hyperspectral imaging. Journal of Food Engineering, 105(4), 617–624.

Nicolaï, B. M., Lötze, E., Peirs, A., Scheerlinck, N., & Theron, K. I. (2006). Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biology and Technology, 40, 1–6.

Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., et al. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46(2), 99–118.

Noh, H. K., & Lu, R. (2007). Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality. Postharvest Biology and Technology, 43, 193–201.

Noh, H., Peng, Y., & Lu, R. (2007). Integration of hyperspectral reflectance and fluorescence imaging for assessing apple maturity. Transactions of the ASABE, 50(3), 963–971.

Ozaki, Y., McClure, W. F., & Christy, A. A. (Eds.). (2006). Near-infrared spectroscopy in food science and technology. New Jersey: Wiley-Interscience.

Paulus, I., De Busscher, R., & Schrevens, E. (1997). Use of image analysis to investigate human quality classification of apples. Journal of Agricultural Engineering Research, 68, 341–353.

Peirs, A., Scheerlinck, N., De Baerdemaeker, J., & Nicolaï, B. M. (2003). Starch index determination of apple fruit by means of a hyperspectral near infrared reflectance imaging system. Journal of near infrared spectroscopy, 11(5), 379–389.

Peng, Y., & Lu, R. (2005). Modeling multispectral scattering profiles for prediction of apple fruit firmness. Transactions of ASAE, 48(1), 235–242.

Peng, Y., & Lu, R. (2006). An LCTF-based multispectral imaging system for estimation of apple fruit firmness: Part I. Acquisition and characterization of scattering images. Transactions of ASAE, 49(1), 259–267.

Peng, Y., & Lu, R. (2008). Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 48, 52–56.

Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., et al. (2009). Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 113(1), S110–S122.

Polder, G., van der Heijden, G. W. A. M., & Young, I. T. (2002). Spectral image analysis for measuring ripeness of tomatoes. Transactions of ASAE, 45, 1155–1161.

Polder, G., van der Heijden, G. W. A. M., & Young, I. T. (2003). Tomato sorting using independent component analysis on spectral images. Real-Time Imaging, 9, 253–259.

Polder, G., van der Heijden, G. W. A. M., van der Voet, H., & Young, I. T. (2004). Measuring surface distribution of carotenes and chlorophyll in ripening tomatoes using imaging spectrometry. Postharvest Biology and Technology, 34, 117–129.

Prats-Montalbán, J. M., de Juan, A., & Ferrer, A. (2011). Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems, 107, 1–23.

Qin, J., & Lu, R. (2005). Detection of pits in tart cherries by hyperspectral transmission imaging. Transactions of ASAE, 48(5), 1963–1970.

Qin, J., Burks, T. F., Ritenour, M. A., & Bonn, W. G. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 93, 183–191.

Qin, J., Burks, T. F., Zhao, X., Niphadkar, N., & Ritenour, M. A. (2012). Development of a two-band spectral imaging system for real-time citrus canker detection. Journal of Food Engineering, 108(1), 87–93.

Quevedo, R., & Aguilera. (2010). Color computer vision and stereoscopy for estimating firmness in the salmon (Salmon salar) fillets. Food and Bioprocess Technology, 3(4), 561–567.

Quevedo, R., Aguilera, J. M., & Pedreschi, F. (2010). Color of salmon fillets by computer vision and sensory panel. Food and Bioprocess Technology, 3(5), 637–643.

Rajkumar, P., Wang, N., EImasry, G., Raghavan, G. S. V., & Gariepy, Y. (2012). Studies on banana fruit quality and maturity stages using hyperspectral imaging. Journal of Food Engineering, 108(1), 194–200.

Russ, J. C. (2011). The image processing handbook (6th ed.). Boca Raton: CRC.

Shaw, P. J. A. (2003). Multivariate statistics for the environmental sciences. New York: Hodder-Arnold.

Shih, F. Y. (2010). Image processing and pattern recognition: Fundamentals and techniques. New York: Wiley-IEEE.

Sjöström, M., Wold, S., & Söderström, B. (1986). PLS discriminant plots. In E. S. Gelsema & L. N. Kanal (Eds.), Pattern recognition in practice I (pp. 461–470). Amsterdam: Elsevier.

Sugiyama, T., Sugiyama, J., Tsuta, M., Fujita, K., Shibata, M., Kokawa, M., et al. (2010). NIR spectral imaging with discriminant analysis for detecting foreign materials among blueberries. Journal of Food Engineering, 101(3), 244–252.

Sun, D.-W. (Ed.). (2007). Computer vision technology for food quality evaluation. London: Academic.

Sun, D.-W. (Ed.). (2009). Infrared spectroscopy for food quality analysis and control. London: Academic.

Sun, D.-W. (Ed.). (2010). Hyperspectral imaging for food quality analysis and control. London: Academic.

Taghizadeh, M., Gowen, A. A., & O’Donnell, C. P. (2011a). Comparison of hyperspectral imaging with conventional RGB imaging for quality evaluation of Agaricus bisporus mushrooms. Biosystems Engineering, 108(2), 191–194.

Taghizadeh, M., Gowen, A. A., & O’Donnell, C. P. (2011b). The potential of visible-near infrared hyperspectral imaging to discriminate between casing soil, enzymatic browning and undamaged tissue on mushroom (Agaricus bisporus) surfaces. Computers and Electronics in Agriculture, 77(1), 74–80.

Unay, D., & Gosselin, B. (2006). Automatic defect segmentation of ‘Jonagold’ apples on multi-spectral images: A comparative study. Postharvest Biology and Technology, 42, 271–279.

Unay, D., Gosselin, B., Kleynen, O., Leemans, V., Destain, M. F., & Debeir, O. (2011). Automatic grading of bi-colored apples by multispectral machine vision. Computers and Electronics in Agriculture, 75(1), 204–212.

Vila, J., Calpe, J., Pla, F., Gómez, L., Connell, J., Marchant, J. A., et al. (2005). SmartSpectra: Applying multispectral imaging to industrial environments. Real-Time Imaging, 11, 85–98.

Vila-Francés, J., Calpe-Maravilla, J., Gómez-Chova, L., & Amorós-López, J. (2010). Analysis of acousto-optic tunable filter performance for imaging applications. Optical Engineering, 49(11), 113203–113203-9.

Vila-Francés, J., Calpe-Maravilla, J., Gómez-Chova, L., & Amorós-López, J. (2011). Design of a configurable multispectral imaging system based on an AOTF. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58(1), 259–262.

Vinzi, V., Chin, W. W., Henseler, J., & Wang, H. (Eds.). (2010). Handbook of partial least squares. Berlin: Springer.

Wang, J., Nakano, K., Ohashi, S., Kubota, Y., Takizawa, K., & Sasaki, Y. (2011a). Detection of external insect infestations in jujube fruit using hyperspectral reflectance imaging. Biosystems Engineering, 108(4), 345–351.

Wang, W., Li, C., Tollner, E. W., Rains, G. C., & Gitaitis, R. D. (2011b). A liquid crystal tunable filter based shortwave infrared spectral imaging system: Calibration and characterization. Computers and Electronics in Agriculture. doi: 10.1016/j.compag.2011.09.003 .

Wang, W., Ca, L., Tollner, E. W., Rains, G. C., & Gitaitis, R. D. (2011c). A liquid crystal tunable filter based shortwave infrared spectral imaging system: Design and integration. Computers and Electronics in Agriculture. doi: 10.1016/j.compag.2011.07.012 .

Wang, W., Li, C., Tollner, E. W., Gitaitis, R. D., & Rains, G. C. (2012). Shortwave infrared hyperspectral imaging for detecting sour skin (burkholderia cepacia)-infected onions. Journal of Food Engineering, 109(1), 36–48.

Xing, J., & De Baerdemaeker, J. (2005). Bruise detection on ‘Jonagold’ apples using hyperspectral imaging. Postharvest Biology and Technology, 37(2), 152–162.

Xing, J., Bravo, C., Jancsók, P. T., Ramon, H., & De Baerdemaeker, J. (2005). Detecting bruises on ‘Golden Delicious’ apples using hyperspectral imaging with multiple wavebands. Biosystems Engineering, 90(1), 27–36.

Xing, J., Jancsók, P. T., & De Baerdemaeker, J. (2007). Stem-end/calyx identification on apples using contour analysis in multispectral images. Biosystems Engineering, 96(2), 231–237.

Xing, J., Saeys, W., & De Baerdemaeker, J. (2007). Combination of chemometric tools and image processing for bruise detection on apples. Computers and Electronics in Agriculture, 56(1), 1–13.

Zhao, J., Vittayapadung, S., Quansheng, C., Chaitep, S., & Chuaviroj, R. (2009). Nondestructive measurement of sugar content of apple using hyperspectral imaging technique. Maejo International Journal of Science and Technology, 3(1), 130–142.

Zhao, J., Ouyang, Q., Chen, Q., & Wang, J. (2010). Detection of bruise on pear by hyperspectral imaging sensor with different classification algorithms. Sensor Letters, 8, 570–576.

[-]

This item appears in the following Collection(s)

Show full item record