- -

Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lorente, D. es_ES
dc.contributor.author Aleixos Borrás, María Nuria es_ES
dc.contributor.author Gómez Sanchís, Juan es_ES
dc.contributor.author Cubero, S. es_ES
dc.contributor.author García Navarrete, Óscar Leonardo es_ES
dc.contributor.author Blasco Ivars, José es_ES
dc.date.accessioned 2016-07-22T11:25:06Z
dc.date.available 2016-07-22T11:25:06Z
dc.date.issued 2011-05
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/68034
dc.description.abstract [EN] Hyperspectral imaging systems are starting to be used as a scientific tool for food quality assessment. A typical hyperspectral image is composed of a set of a relatively wide range of monochromatic images corresponding to continuous wavelengths that normally contain redundant information or may exhibit a high degree of correlation. In addition, computation of the classifiers used to deal with the data obtained from the images can become excessively complex and time-consuming for such high-dimensional datasets, and this makes it difficult to incorporate such systems into an industry that demands standard protocols or high-speed processes. Therefore, recent works have focused on the development of new systems based on this technology that are capable of analysing quality features that cannot be inspected using visible imaging. Many of those studies have also centred on finding new statistical techniques to reduce the hyperspectral images to multispectral ones, which are easier to implement in automatic, non-destructive systems. This article reviews recent works that use hyperspectral imaging for the inspection of fruit and vegetables. It explains the different technologies available to acquire the images and their use for the non-destructive inspection of the internal and external features of these products. Particular attention is paid to the works aimed at reducing the dimensionality of the images, with details of the statistical techniques most commonly used for this task. © 2011 Springer Science+Business Media, LLC. es_ES
dc.description.sponsorship This work was partially funded by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria de Espana (INIA) through research project RTA2009-00118-C02-01 and by the Ministerio de Ciencia e Innovacion de Espana (MICINN) through research project DPI2010-19457, both projects with the support of European FEDER funds. This work was also been partially funded by the Universitat de Valencia through project UV-INV-AE11-41271.
dc.language Inglés es_ES
dc.publisher Springer Verlag es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Computer vision es_ES
dc.subject Fruits es_ES
dc.subject Hyperspectral imaging es_ES
dc.subject Image analysis es_ES
dc.subject Multispectral imaging es_ES
dc.subject Non-destructive inspection es_ES
dc.subject Quality es_ES
dc.subject Vegetables es_ES
dc.subject Data sets es_ES
dc.subject Degree of correlations es_ES
dc.subject External features es_ES
dc.subject Food quality es_ES
dc.subject Fruit and vegetables es_ES
dc.subject High-dimensional es_ES
dc.subject High-speed process es_ES
dc.subject Hyper-spectral images es_ES
dc.subject Hyperspectral imaging systems es_ES
dc.subject Monochromatic images es_ES
dc.subject Multi-spectral es_ES
dc.subject Non destructive es_ES
dc.subject Non destructive inspection es_ES
dc.subject Quality assessment es_ES
dc.subject Quality features es_ES
dc.subject Redundant informations es_ES
dc.subject Scientific tool es_ES
dc.subject Standard protocols es_ES
dc.subject Statistical techniques es_ES
dc.subject Visible imaging es_ES
dc.subject Image quality es_ES
dc.subject Independent component analysis es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-011-0725-1
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2009-00118-C02-01/ES/RTA2009-00118-C02-01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-19457/ES/DESARROLLO DE NUEVAS TECNICAS DE VISION POR COMPUTADOR BASADAS EN SISTEMAS MULTI-AGENTE E IMAGENES HIPERESPECTRALES PARA LA ESTIMACION AUTOMATICA DE LA CALIDAD DE LOS CITRICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UV//INV-AE11-41271/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.description.bibliographicCitation Lorente, D.; Aleixos Borrás, MN.; Gómez Sanchís, J.; Cubero, S.; García Navarrete, ÓL.; Blasco Ivars, J. (2011). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food and Bioprocess Technology. 5(4):1121-1142. https://doi.org/10.1007/s11947-011-0725-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11947-011-0725-1 es_ES
dc.description.upvformatpinicio 1121 es_ES
dc.description.upvformatpfin 1142 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 212459 es_ES
dc.identifier.eissn 1935-5149
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Universitat de València
dc.description.references Aleixos, N., Blasco, J., Navarrón, F., & Moltó, E. (2002). Multispectral inspection of citrus in real-time using machine vision and digital signal processors. Computers and Electronics in Agriculture, 33(2), 121–137. es_ES
dc.description.references Al-Mallahi, A., Kataoka, T., & Okamoto, H. (2008). Discrimination between potato tubers and clods by detecting the significant wavebands. Biosystems Engineering, 100(3), 329–337. es_ES
dc.description.references Ariana, D. P., & Lu, R. (2010a). Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles. Computers and Electronics in Agriculture, 74(1), 137–144. es_ES
dc.description.references Ariana, D. P., & Lu, R. (2010b). Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging. Journal of Food Engineering, 96(4), 583–590. es_ES
dc.description.references Ariana, D. P., Guyer, D. E., & Shrestha, B. (2006). Integrating multispectral reflectance and fluorescence imaging for defect detection on apples. Computers and Electronics in Agriculture, 50, 148–161. es_ES
dc.description.references Bei, L., Dennis, G. I., Miller, H. M., Spaine, T. W., & Carnahan, J. W. (2004). Acousto-optic tunable filters: Fundamentals and applications as applied to chemical analysis techniques. Progress in Quantum Electronics, 28(2), 67–87. es_ES
dc.description.references Bennedsen, B. S., & Peterson, D. L. (2005). Performance of a system for apple surface defect identification in near-infrared images. Biosystems Engineering, 90(4), 419–431. es_ES
dc.description.references Bennedsen, B. S., Peterson, D. L., & Tabb, A. (2007). Identifying apple surface defects using principal components analysis and artificial neural networks. Transactions of the ASABE, 50(6), 2257–2265. es_ES
dc.description.references Blasco, J., Aleixos, N., Gómez, J., & Moltó, E. (2007). Citrus sorting by identification of the most common defects using multispectral computer vision. Journal of Food Engineering, 83(3), 384–393. es_ES
dc.description.references Blasco, J., Aleixos, N., Gómez-Sanchis, J., & Moltó, E. (2009). Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features. Biosystems Engineering, 103, 137–145. es_ES
dc.description.references Cayuela, J. A., García-Martos, J. M., & Caliani, N. (2009). NIR prediction of fruit moisture, free acidity and oil content in intact olives. Grasas y Aceites, 60(2), 194–202. es_ES
dc.description.references Chang, C. (1976). Acousto-optic devices and applications. IEEE Transactions on Sonics Ultrasound, 23(1), 2–22. es_ES
dc.description.references Chang, C. (2003). Hyperspectral imaging: Techniques for spectral detection and classification. New York: Springer. es_ES
dc.description.references Cheng, X., Chen, Y., Tao, Y., Wang, C., Kim, M. S., & Lefcourt, A. (2004). A novel integrated PCA and FLD method on hyperspectral image feature extraction for cucumber chilling damage inspection. Transactions of ASAE, 47(4), 1313–1320. es_ES
dc.description.references Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sun, D.-W., & Menesatti, P. (2011). Shape analysis of agricultural products: A review of recent research advances and potential application to computer vision. Food and Bioprocess Technology, 4, 673–692. es_ES
dc.description.references Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487–504. es_ES
dc.description.references Du, C.-J., & Sun, D.-W. (2006). Learning techniques used in computer vision for food quality evaluation: a review. Journal of Food Engineering, 72, 39–55. es_ES
dc.description.references Du, C.-J., & Sun, D.-W. (2009). Retrospective shading correlation of confocal laser scanning microscopy beef images for three-dimensional visualization. Food and Bioprocess Technology, 2, 167–176. es_ES
dc.description.references Egmont-Petersen, M., de Ridder, D., & Handels, H. (2002). Image processing with neural networks—A review. Pattern Recognition, 35(10), 2279–2301. es_ES
dc.description.references ElMasry, G., Wang, N., ElSayed, A., & Ngadi, M. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering, 81, 98–107. es_ES
dc.description.references ElMasry, G., Nassar, A., Wang, N., & Vigneault, C. (2008a). Spectral methods for measuring quality changes of fresh fruits and vegetables. Stewart Postharvest Review, 4, 1–13. es_ES
dc.description.references ElMasry, G., Wang, N., Vigneault, C., Qiao, J., & ElSayed, A. (2008b). Early detection of apple bruises on different background colors using hyperspectral imaging. LWT, 41, 337–345. es_ES
dc.description.references ElMasry, G., Wang, N., & Vigneault, C. (2009). Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology, 52, 1–8. es_ES
dc.description.references Erives, H., & Fitzgerald, G. J. (2005). Automated registration of hyperspectral images for precision agriculture. Computers and Electronics in Agriculture, 47(2), 103–119. es_ES
dc.description.references Farrera-Rebollo, R. R., Salgado-Cruz, M. P., Chanona-Pérez, J., Gutiérrez-López, G. F., Alamilla-Beltrán, L., & Calderón-Domínguez, G. (2011). Evaluation of image analysis tools for characterization of sweet bread crumb structure. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0513-y . es_ES
dc.description.references Fernandes, A. M., Oliveira, P., Moura, J. P., Oliveira, A. A., Falco, V., Correia, M. J., et al. (2011). Determination of anthocyanin concentration in whole grape skins using hyperspectral imaging and adaptive boosting neural networks. Journal of Food Engineering, 105(2), 216–226. es_ES
dc.description.references Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179–188. es_ES
dc.description.references Geladi, P. L. M. (2007). Calibration standards and image calibration. In H. F. Grahn & P. Geladi (Eds.), Techniques and applications of hyperspectral image analysis (pp. 203–220). Chichester: Wiley. es_ES
dc.description.references Gómez-Sanchis, J., Camps-Valls, G., Moltó, E., Gómez-Chova, L., Aleixos, N., & Blasco, J. (2008a). Segmentation of hyperspectral images for the detection of rotten mandarins. Lecture Notes in Computer Science, 5112, 1071–1080. es_ES
dc.description.references Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Moltó, E., et al. (2008b). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80–86. es_ES
dc.description.references Gómez-Sanchis, J., Moltó, E., Camps-Valls, G., Gómez-Chova, L., Aleixos, N., & Blasco, J. (2008c). Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits. Journal of Food Engineering, 85(2), 191–200. es_ES
dc.description.references Gómez-Sanchis, J., Martín-Guerrero, J. D., Soria-Olivas, E., Martínez-Sober, M., Magdalena-Benedito, R., & Blasco, J. (2012). Detecting rottenness caused by Penicillium in citrus fruits using machine learning techniques. Expert Systems with Applications, 39(1), 780–785. es_ES
dc.description.references Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing (3rd ed.). Upper Saddle River: Prentice Hall. es_ES
dc.description.references Gowen, A. A., O’Donnell, C. P., Cullen, P. J., Downey, G., & Frias, J. M. (2007). Hyperspectral imaging—An emerging process analytical tool. Trends in Food Science & Technology, 18(12), 590–598. es_ES
dc.description.references Gowen, A. A., O’Donnell, C. P., Taghizadeh, M., Cullen, P. J., Frias, J. M., & Downey, G. (2008). Hyperspectral imaging combined with principal component analysis for bruise damage detection on white mushrooms (Agaricus bisporus). Journal of Chemometrics, 22(3–4), 259–267. es_ES
dc.description.references Gowen, A. A., Taghizadeh, M., & O’Donnell, C. P. (2009a). Identification of mushrooms subjected to freeze damage using hyperspectral imaging. Journal of Food Engineering, 93, 7–12. es_ES
dc.description.references Gowen, A. A., Tsenkova, R., Esquerre, C., Downey, G., & O’Donnell, P. D. (2009b). Use of near infrared hyperspectral imaging to identify water matrix co-ordinates in mushrooms (Agaricus bisporus) subjected to mechanical vibration. Journal of Near Infrared Spectroscopy, 17(6), 363–371. es_ES
dc.description.references Grahn, H. F., & Geladi, P. (2007). Techniques and applications of hyperspectral image analysis. Chichester: Wiley. es_ES
dc.description.references Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182. es_ES
dc.description.references Hetch, E. (2001). Optics (4th ed.). Reading: Addison Wesley. es_ES
dc.description.references Huang, Y., Kangas, L. J., & Rasco, B. A. (2007). Applications of artificial neural networks (ANNs) in food science. Critical Reviews in Food Science and Nutrition, 47(2), 113–126. es_ES
dc.description.references Jiménez, A., Beltrán, G., Aguilera, M. P., & Uceda, M. (2008). A sensor-software based on artificial neural network for the optimization of olive oil elaboration process. Sensors and Actuators B, 129, 985–990. es_ES
dc.description.references Jobson, J. D. (1992). Applied multivariate data analysis: Categorical and multivariate methods, vol. Berlin: Springer. es_ES
dc.description.references Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). New York: Springer. es_ES
dc.description.references Kalkan, H., Beriat, P., Yardimci, Y., & Pearson, T. C. (2011). Detection of contaminated hazelnuts and ground red chili pepper flakes by multispectral imaging. Computers and Electronics in Agriculture, 77(1), 28–34. es_ES
dc.description.references Karimi, Y., Maftoonazad, N., Ramaswamy, H. S., Prasher, S. O., & Marcotte, M. (2009). Application of hyperspectral technique for color classification avocados subjected to different treatments. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0292-x . es_ES
dc.description.references Kays, S. J. (1999). Preharvest factors affecting appearance. Postharvest Biology and Technology, 15, 233–247. es_ES
dc.description.references Kim, M. S., Chen, Y. R., & Mehl, P. M. (2001). Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of ASAE, 44(3), 721–729. es_ES
dc.description.references Kleynen, O., Leemans, V., & Destain, M. F. (2005). Development of a multi-spectral vision system for the detection of defects on apples. Journal of Food Engineering, 69, 41–49. es_ES
dc.description.references Lee, J. A., & Verleysen, M. (2007). Nonlinear dimensionality reduction. New York: Springer. es_ES
dc.description.references Lefcout, A. M., Kim, M. S., Chen, Y.-R., & Kang, B. (2006). Systematic approach for using hyperspectral imaging data to develop multispectral imagining systems: Detection of feces on apples. Computers and Electronics in Agriculture, 54, 22–35. es_ES
dc.description.references Li, J., Rao, X., & Ying, Y. (2011). Detection of common defects on oranges using hyperspectral reflectance imaging. Computers and Electronics in Agriculture, 78(1), 38–48. es_ES
dc.description.references Liu, Y., Chen, Y. R., Wang, C. Y., Chan, D. E., & Kim, M. S. (2005). Development of a simple algorithm for the detection of chilling injury in cucumbers from visible/near-infrared hyperspectral imaging. Applied Spectroscopy, 59(1), 78–85. es_ES
dc.description.references Liu, Y., Chen, Y. R., Wang, C. Y., Chan, D. E., & Kim, M. S. (2006). Development of hyperspectral imaging technique for the detection of chilling injury in cucumbers: Spectral and image analysis. Applied Engineering in Agriculture, 22(1), 101–111. es_ES
dc.description.references Lleó, L., Barreiro, P., Ruiz-Altisent, M., & Herrero, A. (2009). Multispectral images of peach related to firmness and maturity at harvest. Journal of Food Engineering, 93(2), 229–235. es_ES
dc.description.references Lleó, L., Roger, J. M., Herrero-Langreo, A., Diezma-Iglesias, B., & Barreiro, P. (2011). Comparison of multispectral indexes extracted from hyperspectral images for the assessment of fruit ripening. Journal of Food Engineering, 104(4), 612–620. es_ES
dc.description.references Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., & Blasco, J. (2011). Selection of optimal wavelength features for decay detection in citrus fruit using the ROC curve and neural networks. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0737-x . es_ES
dc.description.references Lu, R. (2003). Detection of bruises on apples using near-infrared hyperspectral imaging. Transactions of the ASAE, 46, 523–530. es_ES
dc.description.references Lu, R., & Peng, Y. (2006). Hyperspectral scattering for assessing peach fruit firmness. Biosystems Engineering, 93(2), 161–171. es_ES
dc.description.references Lunadei, L., Diezma, B., Lleó, L., Ruiz-Garcia, L., Cantalapiedra, S., & Ruiz-Altisent, M. (2012). Monitoring of fresh-cut spinach leaves through a multispectral vision system. Postharvest Biology and Technology, 63, 74–84. es_ES
dc.description.references Magwaza, L. S., Opara, U. L., Nieuwoudt, H., Cronje, P. J. R., Saeys, W., & Nicolaï, B. (2011). NIR spectroscopy applications for internal and external quality analysis of citrus fruit—A review. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0697-1 . es_ES
dc.description.references Manickavasagan, A., Jayas, D. S., White, N. D. G., & Paliwal, J. (2010). Wheat class identification using thermal imaging. Food and Bioprocess Technology, 3(3), 450–460. es_ES
dc.description.references Martinez, A. M., & Kak, A. C. (2004). PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), 228–233. es_ES
dc.description.references Martínez-Usó, A., Pla, F., & García-Sevilla, P. (2005). Multispectral iSegmentation by energy minimization for fruit quality estimation. In: Pattern Recognition and Image Analysis: Second Iberian Conference (IbPRIA 2005), Estoril, Portugal, June 7–9, 2005. LNCS, 3523, 689–696. es_ES
dc.description.references Mather, P. M. (1998). Computer processing of remotely sensed images. Chichester: Wiley. es_ES
dc.description.references McLachlan, G. J. (2004). Discriminant analysis and statistical pattern recognition. New Jersey: Wiley-Interscience. es_ES
dc.description.references Mehl, P. M., Chen, Y. R., Kim, M. S., & Chan, D. E. (2004). Development of hyperspectral imaging technique for detection of apple surface defects and contaminations. Journal of Food Engineering, 61, 67–81. es_ES
dc.description.references Mendoza, F., Lu, R., Ariana, D., Cen, H., & Bailey, B. (2011). Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 62(2), 149–160. es_ES
dc.description.references Menesatti, P., Zanella, A., D’Andrea, S., Costa, C., Paglia, G., & Pallottino, F. (2009). Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of apples. Food and Bioprocess Technology, 2, 308–314. es_ES
dc.description.references Nguyen Do Trong, N., Tsuta, M., Nicolaï, B. M., De Baerdemaeker, J., & Saeys, W. (2011). Prediction of optimal cooking time for boiled potatoes by hyperspectral imaging. Journal of Food Engineering, 105(4), 617–624. es_ES
dc.description.references Nicolaï, B. M., Lötze, E., Peirs, A., Scheerlinck, N., & Theron, K. I. (2006). Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biology and Technology, 40, 1–6. es_ES
dc.description.references Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., et al. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46(2), 99–118. es_ES
dc.description.references Noh, H. K., & Lu, R. (2007). Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality. Postharvest Biology and Technology, 43, 193–201. es_ES
dc.description.references Noh, H., Peng, Y., & Lu, R. (2007). Integration of hyperspectral reflectance and fluorescence imaging for assessing apple maturity. Transactions of the ASABE, 50(3), 963–971. es_ES
dc.description.references Ozaki, Y., McClure, W. F., & Christy, A. A. (Eds.). (2006). Near-infrared spectroscopy in food science and technology. New Jersey: Wiley-Interscience. es_ES
dc.description.references Paulus, I., De Busscher, R., & Schrevens, E. (1997). Use of image analysis to investigate human quality classification of apples. Journal of Agricultural Engineering Research, 68, 341–353. es_ES
dc.description.references Peirs, A., Scheerlinck, N., De Baerdemaeker, J., & Nicolaï, B. M. (2003). Starch index determination of apple fruit by means of a hyperspectral near infrared reflectance imaging system. Journal of near infrared spectroscopy, 11(5), 379–389. es_ES
dc.description.references Peng, Y., & Lu, R. (2005). Modeling multispectral scattering profiles for prediction of apple fruit firmness. Transactions of ASAE, 48(1), 235–242. es_ES
dc.description.references Peng, Y., & Lu, R. (2006). An LCTF-based multispectral imaging system for estimation of apple fruit firmness: Part I. Acquisition and characterization of scattering images. Transactions of ASAE, 49(1), 259–267. es_ES
dc.description.references Peng, Y., & Lu, R. (2008). Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 48, 52–56. es_ES
dc.description.references Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., et al. (2009). Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 113(1), S110–S122. es_ES
dc.description.references Polder, G., van der Heijden, G. W. A. M., & Young, I. T. (2002). Spectral image analysis for measuring ripeness of tomatoes. Transactions of ASAE, 45, 1155–1161. es_ES
dc.description.references Polder, G., van der Heijden, G. W. A. M., & Young, I. T. (2003). Tomato sorting using independent component analysis on spectral images. Real-Time Imaging, 9, 253–259. es_ES
dc.description.references Polder, G., van der Heijden, G. W. A. M., van der Voet, H., & Young, I. T. (2004). Measuring surface distribution of carotenes and chlorophyll in ripening tomatoes using imaging spectrometry. Postharvest Biology and Technology, 34, 117–129. es_ES
dc.description.references Prats-Montalbán, J. M., de Juan, A., & Ferrer, A. (2011). Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems, 107, 1–23. es_ES
dc.description.references Qin, J., & Lu, R. (2005). Detection of pits in tart cherries by hyperspectral transmission imaging. Transactions of ASAE, 48(5), 1963–1970. es_ES
dc.description.references Qin, J., Burks, T. F., Ritenour, M. A., & Bonn, W. G. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 93, 183–191. es_ES
dc.description.references Qin, J., Burks, T. F., Zhao, X., Niphadkar, N., & Ritenour, M. A. (2012). Development of a two-band spectral imaging system for real-time citrus canker detection. Journal of Food Engineering, 108(1), 87–93. es_ES
dc.description.references Quevedo, R., & Aguilera. (2010). Color computer vision and stereoscopy for estimating firmness in the salmon (Salmon salar) fillets. Food and Bioprocess Technology, 3(4), 561–567. es_ES
dc.description.references Quevedo, R., Aguilera, J. M., & Pedreschi, F. (2010). Color of salmon fillets by computer vision and sensory panel. Food and Bioprocess Technology, 3(5), 637–643. es_ES
dc.description.references Rajkumar, P., Wang, N., EImasry, G., Raghavan, G. S. V., & Gariepy, Y. (2012). Studies on banana fruit quality and maturity stages using hyperspectral imaging. Journal of Food Engineering, 108(1), 194–200. es_ES
dc.description.references Russ, J. C. (2011). The image processing handbook (6th ed.). Boca Raton: CRC. es_ES
dc.description.references Shaw, P. J. A. (2003). Multivariate statistics for the environmental sciences. New York: Hodder-Arnold. es_ES
dc.description.references Shih, F. Y. (2010). Image processing and pattern recognition: Fundamentals and techniques. New York: Wiley-IEEE. es_ES
dc.description.references Sjöström, M., Wold, S., & Söderström, B. (1986). PLS discriminant plots. In E. S. Gelsema & L. N. Kanal (Eds.), Pattern recognition in practice I (pp. 461–470). Amsterdam: Elsevier. es_ES
dc.description.references Sugiyama, T., Sugiyama, J., Tsuta, M., Fujita, K., Shibata, M., Kokawa, M., et al. (2010). NIR spectral imaging with discriminant analysis for detecting foreign materials among blueberries. Journal of Food Engineering, 101(3), 244–252. es_ES
dc.description.references Sun, D.-W. (Ed.). (2007). Computer vision technology for food quality evaluation. London: Academic. es_ES
dc.description.references Sun, D.-W. (Ed.). (2009). Infrared spectroscopy for food quality analysis and control. London: Academic. es_ES
dc.description.references Sun, D.-W. (Ed.). (2010). Hyperspectral imaging for food quality analysis and control. London: Academic. es_ES
dc.description.references Taghizadeh, M., Gowen, A. A., & O’Donnell, C. P. (2011a). Comparison of hyperspectral imaging with conventional RGB imaging for quality evaluation of Agaricus bisporus mushrooms. Biosystems Engineering, 108(2), 191–194. es_ES
dc.description.references Taghizadeh, M., Gowen, A. A., & O’Donnell, C. P. (2011b). The potential of visible-near infrared hyperspectral imaging to discriminate between casing soil, enzymatic browning and undamaged tissue on mushroom (Agaricus bisporus) surfaces. Computers and Electronics in Agriculture, 77(1), 74–80. es_ES
dc.description.references Unay, D., & Gosselin, B. (2006). Automatic defect segmentation of ‘Jonagold’ apples on multi-spectral images: A comparative study. Postharvest Biology and Technology, 42, 271–279. es_ES
dc.description.references Unay, D., Gosselin, B., Kleynen, O., Leemans, V., Destain, M. F., & Debeir, O. (2011). Automatic grading of bi-colored apples by multispectral machine vision. Computers and Electronics in Agriculture, 75(1), 204–212. es_ES
dc.description.references Vila, J., Calpe, J., Pla, F., Gómez, L., Connell, J., Marchant, J. A., et al. (2005). SmartSpectra: Applying multispectral imaging to industrial environments. Real-Time Imaging, 11, 85–98. es_ES
dc.description.references Vila-Francés, J., Calpe-Maravilla, J., Gómez-Chova, L., & Amorós-López, J. (2010). Analysis of acousto-optic tunable filter performance for imaging applications. Optical Engineering, 49(11), 113203–113203-9. es_ES
dc.description.references Vila-Francés, J., Calpe-Maravilla, J., Gómez-Chova, L., & Amorós-López, J. (2011). Design of a configurable multispectral imaging system based on an AOTF. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58(1), 259–262. es_ES
dc.description.references Vinzi, V., Chin, W. W., Henseler, J., & Wang, H. (Eds.). (2010). Handbook of partial least squares. Berlin: Springer. es_ES
dc.description.references Wang, J., Nakano, K., Ohashi, S., Kubota, Y., Takizawa, K., & Sasaki, Y. (2011a). Detection of external insect infestations in jujube fruit using hyperspectral reflectance imaging. Biosystems Engineering, 108(4), 345–351. es_ES
dc.description.references Wang, W., Li, C., Tollner, E. W., Rains, G. C., & Gitaitis, R. D. (2011b). A liquid crystal tunable filter based shortwave infrared spectral imaging system: Calibration and characterization. Computers and Electronics in Agriculture. doi: 10.1016/j.compag.2011.09.003 . es_ES
dc.description.references Wang, W., Ca, L., Tollner, E. W., Rains, G. C., & Gitaitis, R. D. (2011c). A liquid crystal tunable filter based shortwave infrared spectral imaging system: Design and integration. Computers and Electronics in Agriculture. doi: 10.1016/j.compag.2011.07.012 . es_ES
dc.description.references Wang, W., Li, C., Tollner, E. W., Gitaitis, R. D., & Rains, G. C. (2012). Shortwave infrared hyperspectral imaging for detecting sour skin (burkholderia cepacia)-infected onions. Journal of Food Engineering, 109(1), 36–48. es_ES
dc.description.references Xing, J., & De Baerdemaeker, J. (2005). Bruise detection on ‘Jonagold’ apples using hyperspectral imaging. Postharvest Biology and Technology, 37(2), 152–162. es_ES
dc.description.references Xing, J., Bravo, C., Jancsók, P. T., Ramon, H., & De Baerdemaeker, J. (2005). Detecting bruises on ‘Golden Delicious’ apples using hyperspectral imaging with multiple wavebands. Biosystems Engineering, 90(1), 27–36. es_ES
dc.description.references Xing, J., Jancsók, P. T., & De Baerdemaeker, J. (2007). Stem-end/calyx identification on apples using contour analysis in multispectral images. Biosystems Engineering, 96(2), 231–237. es_ES
dc.description.references Xing, J., Saeys, W., & De Baerdemaeker, J. (2007). Combination of chemometric tools and image processing for bruise detection on apples. Computers and Electronics in Agriculture, 56(1), 1–13. es_ES
dc.description.references Zhao, J., Vittayapadung, S., Quansheng, C., Chaitep, S., & Chuaviroj, R. (2009). Nondestructive measurement of sugar content of apple using hyperspectral imaging technique. Maejo International Journal of Science and Technology, 3(1), 130–142. es_ES
dc.description.references Zhao, J., Ouyang, Q., Chen, Q., & Wang, J. (2010). Detection of bruise on pear by hyperspectral imaging sensor with different classification algorithms. Sensor Letters, 8, 570–576. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem