- -

Zeolites: Promised Materials for the Sustainable Production of Hydrogen

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Zeolites: Promised Materials for the Sustainable Production of Hydrogen

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chica, Antonio es_ES
dc.date.accessioned 2016-07-22T11:35:33Z
dc.date.available 2016-07-22T11:35:33Z
dc.date.issued 2013
dc.identifier.issn 2090-861X
dc.identifier.uri http://hdl.handle.net/10251/68036
dc.description.abstract Zeolites have been shown to be useful catalysts in a large variety of reactions, from acid to base and redox catalysis. ð£e particular properties of these materials (high surface area, uniform porosity, interconnected pore/channel system, accessible pore volume, high adsorption capacity, ion-exchange ability, and shape/size selectivity) provide crucial features as effective catalysts and catalysts supports. Currently, new applications are being developed from the considerable existing knowledge about these important and remarkable materials. Among them, those applications related to the development of processes with less impact on the environment (green processes) and with the production of alternative and cleaner energies are of paramount importance. Hydrogen is believed to be critical for the energy and environmental sustainability. It is a clean energy carrier which can be used for transportation and stationary power generation. In the production of hydrogen, the development of new catalysts is one of the most important and effective ways to address the problems related to the sustainable production of hydrogen. ð£is paper explores the possibility to use zeolites as catalysts or supports of catalysts to produce hydrogen from renewable resources. Speci􀄕cally, two approaches have been considered: reforming of biomass-derived compounds (reforming of bioethanol) and water splitting using solar energy. ð£is paper examines the role of zeolites in the preparation of highly active and selective ethanol steam reforming catalysts and their main properties to be used as efficient water splitting photocatalysts. es_ES
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof ISRN Chemical Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Zeolites: Promised Materials for the Sustainable Production of Hydrogen es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2013/907425
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Chica, A. (2013). Zeolites: Promised Materials for the Sustainable Production of Hydrogen. ISRN Chemical Engineering. (907425):1-19. doi:10.1155/2013/907425 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2013/907425 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 907425 es_ES
dc.relation.senia 238119 es_ES
dc.description.references Barrer, R. M., & Ibbitson, D. A. (1944). Occlusion of hydrocarbons by chabazite and analcite. Transactions of the Faraday Society, 40, 195. doi:10.1039/tf9444000195 es_ES
dc.description.references Breck, D. W. (1964). Crystalline molecular sieves. Journal of Chemical Education, 41(12), 678. doi:10.1021/ed041p678 es_ES
dc.description.references Rabo, J. A. (1981). Unifying Principles in Zeolite Chemistry and Catalysis. Catalysis Reviews, 23(1-2), 293-313. doi:10.1080/03602458108068080 es_ES
dc.description.references NEWSAM, J. M. (1986). The Zeolite Cage Structure. Science, 231(4742), 1093-1099. doi:10.1126/science.231.4742.1093 es_ES
dc.description.references Freyhardt, C. C., Tsapatsis, M., Lobo, R. F., Balkus, K. J., & Davis, M. E. (1996). A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature, 381(6580), 295-298. doi:10.1038/381295a0 es_ES
dc.description.references Lobo, R. F., Tsapatsis, M., Freyhardt, C. C., Khodabandeh, S., Wagner, P., Chen, C.-Y., … Davis, M. E. (1997). Characterization of the Extra-Large-Pore Zeolite UTD-1. Journal of the American Chemical Society, 119(36), 8474-8484. doi:10.1021/ja9708528 es_ES
dc.description.references Wessels, T., Baerlocher, C., McCusker, L. B., & Creyghton, E. J. (1999). An Ordered Form of the Extra-Large-Pore Zeolite UTD-1:  Synthesis and Structure Analysis from Powder Diffraction Data. Journal of the American Chemical Society, 121(26), 6242-6247. doi:10.1021/ja9907717 es_ES
dc.description.references Wagner, P., Yoshikawa, M., Tsuji, K., Davis, M. E., Wagner, P., Lovallo, M., & Taspatsis, M. (1997). CIT-5: a high-silica zeolite with 14-ring pores. Chemical Communications, (22), 2179-2180. doi:10.1039/a704774f es_ES
dc.description.references Burton, A., Elomari, S., Chen, C.-Y., Medrud, R. C., Chan, I. Y., Bull, L. M., … Vittoratos, E. S. (2003). SSZ-53 and SSZ-59: Two Novel Extra-Large Pore Zeolites. Chemistry - A European Journal, 9(23), 5737-5748. doi:10.1002/chem.200305238 es_ES
dc.description.references Strohmaier, K. G., & Vaughan, D. E. W. (2003). Structure of the First Silicate Molecular Sieve with 18-Ring Pore Openings, ECR-34. Journal of the American Chemical Society, 125(51), 16035-16039. doi:10.1021/ja0371653 es_ES
dc.description.references Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238 es_ES
dc.description.references Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957 es_ES
dc.description.references Davis, M. E., Saldarriaga, C., Montes, C., Garces, J., & Crowdert, C. (1988). A molecular sieve with eighteen-membered rings. Nature, 331(6158), 698-699. doi:10.1038/331698a0 es_ES
dc.description.references Csicsery, S. M. (1984). Shape-selective catalysis in zeolites. Zeolites, 4(3), 202-213. doi:10.1016/0144-2449(84)90024-1 es_ES
dc.description.references Derouane, E. G. (1980). New Aspects of Molecular Shape-Selectivity: Catalysis by Zeolite ZSM - 5. Catalysis by Zeolites, 5-18. doi:10.1016/s0167-2991(08)64860-0 es_ES
dc.description.references Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006 es_ES
dc.description.references Corma, A., & Martinez, A. (1995). Zeolites and Zeotypes as catalysts. Advanced Materials, 7(2), 137-144. doi:10.1002/adma.19950070206 es_ES
dc.description.references KAEDING, W. (1981). Selective alkylation of toluene with methanol to produce para-Xylene. Journal of Catalysis, 67(1), 159-174. doi:10.1016/0021-9517(81)90269-4 es_ES
dc.description.references ANDERSON, R. A. (1977). Molecular Sieve Adsorbent Applications State of the Art. ACS Symposium Series, 637-649. doi:10.1021/bk-1977-0040.ch053 es_ES
dc.description.references Nováková, J., & Dolejšek, Z. (1990). A comment on the oxidation of coke deposited on zeolites. Zeolites, 10(3), 189-192. doi:10.1016/0144-2449(90)90044-r es_ES
dc.description.references Antunes, A. P., Ribeiro, M. F., Silva, J. M., Ribeiro, F. R., Magnoux, P., & Guisnet, M. (2001). Catalytic oxidation of toluene over CuNaHY zeolites. Applied Catalysis B: Environmental, 33(2), 149-164. doi:10.1016/s0926-3373(01)00174-6 es_ES
dc.description.references SCHERZER, J. (1973). Infrared spectra of ultrastable zeolites derived from type Y zeolites*1. Journal of Catalysis, 28(1), 101-115. doi:10.1016/0021-9517(73)90184-x es_ES
dc.description.references Chen, N. Y. (1976). Hydrophobic properties of zeolites. The Journal of Physical Chemistry, 80(1), 60-64. doi:10.1021/j100542a013 es_ES
dc.description.references Flanigen, E. M., Bennett, J. M., Grose, R. W., Cohen, J. P., Patton, R. L., Kirchner, R. M., & Smith, J. V. (1978). Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature, 271(5645), 512-516. doi:10.1038/271512a0 es_ES
dc.description.references Scherzer, J., Bass, J. L., & Hunter, F. D. (1975). Structural characterization of hydrothermally treated lanthanum Y zeolites. I. Framework vibrational spectra and crystal structure. The Journal of Physical Chemistry, 79(12), 1194-1199. doi:10.1021/j100579a010 es_ES
dc.description.references VENUTO, P., HAMILTON, L., & LANDIS, P. (1966). Organic reactions catalyzed by crystalline aluminosilicatesII. Alkylation reactions: Mechanistic and aging considerations. Journal of Catalysis, 5(3), 484-493. doi:10.1016/s0021-9517(66)80067-2 es_ES
dc.description.references Ward, J. W. (1968). Spectroscopic study of the surface of zeolite Y. II. Infrared spectra of structural hydroxyl groups and adsorbed water on alkali, alkaline earth, and rare earth ion-exchanged zeolites. The Journal of Physical Chemistry, 72(12), 4211-4223. doi:10.1021/j100858a046 es_ES
dc.description.references Ozin, G. A., Kuperman, A., & Stein, A. (1989). Advanced Zeolite, Materials Science. Angewandte Chemie International Edition in English, 28(3), 359-376. doi:10.1002/anie.198903591 es_ES
dc.description.references Wang, Z., Wang, H., Mitra, A., Huang, L., & Yan, Y. (2001). Pure-Silica Zeolite Low-k Dielectric Thin Films. Advanced Materials, 13(10), 746-749. doi:10.1002/1521-4095(200105)13:10<746::aid-adma746>3.0.co;2-j es_ES
dc.description.references Pen˜a, M. A., Gómez, J. P., & Fierro, J. L. G. (1996). New catalytic routes for syngas and hydrogen production. Applied Catalysis A: General, 144(1-2), 7-57. doi:10.1016/0926-860x(96)00108-1 es_ES
dc.description.references Armor, J. N. (1999). The multiple roles for catalysis in the production of H2. Applied Catalysis A: General, 176(2), 159-176. doi:10.1016/s0926-860x(98)00244-0 es_ES
dc.description.references Trimm, D. L., & Önsan, Z. I. (2001). ONBOARD FUEL CONVERSION FOR HYDROGEN-FUEL-CELL-DRIVEN VEHICLES. Catalysis Reviews, 43(1-2), 31-84. doi:10.1081/cr-100104386 es_ES
dc.description.references Navarro, R. M., Peña, M. A., & Fierro, J. L. G. (2007). Hydrogen Production Reactions from Carbon Feedstocks:  Fossil Fuels and Biomass. Chemical Reviews, 107(10), 3952-3991. doi:10.1021/cr0501994 es_ES
dc.description.references HALLENBECK, P. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, 27(11-12), 1185-1193. doi:10.1016/s0360-3199(02)00131-3 es_ES
dc.description.references Gardner, D. (2009). Hydrogen production from renewables. Renewable Energy Focus, 9(7), 34-37. doi:10.1016/s1755-0084(09)70036-5 es_ES
dc.description.references Deluga, G. A. (2004). Renewable Hydrogen from Ethanol by Autothermal Reforming. Science, 303(5660), 993-997. doi:10.1126/science.1093045 es_ES
dc.description.references Salge, J. R., Dreyer, B. J., Dauenhauer, P. J., & Schmidt, L. D. (2006). Renewable Hydrogen from Nonvolatile Fuels by Reactive Flash Volatilization. Science, 314(5800), 801-804. doi:10.1126/science.1131244 es_ES
dc.description.references Navarro, R. M., Sánchez-Sánchez, M. C., Alvarez-Galvan, M. C., Valle, F. del, & Fierro, J. L. G. (2009). Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy Environ. Sci., 2(1), 35-54. doi:10.1039/b808138g es_ES
dc.description.references Vaidya, P. D., & Rodrigues, A. E. (2006). Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chemical Engineering Journal, 117(1), 39-49. doi:10.1016/j.cej.2005.12.008 es_ES
dc.description.references Kolios, G., Glöckler, B., Gritsch, A., Morillo, A., & Eigenberger, G. (2005). Heat-Integrated Reactor Concepts for Hydrogen Production by Methane Steam Reforming. Fuel Cells, 5(1), 52-65. doi:10.1002/fuce.200400065 es_ES
dc.description.references Haryanto, A., Fernando, S., Murali, N., & Adhikari, S. (2005). Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol:  A Review. Energy & Fuels, 19(5), 2098-2106. doi:10.1021/ef0500538 es_ES
dc.description.references Ni, M., Leung, D. Y. C., & Leung, M. K. H. (2007). A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 32(15), 3238-3247. doi:10.1016/j.ijhydene.2007.04.038 es_ES
dc.description.references FATSIKOSTAS, A. (2004). Reaction network of steam reforming of ethanol over Ni-based catalysts. Journal of Catalysis, 225(2), 439-452. doi:10.1016/j.jcat.2004.04.034 es_ES
dc.description.references Llorca, J., Piscina, P. R. de la, Sales, J., & Homs, N. (2001). Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts. Chemical Communications, (7), 641-642. doi:10.1039/b100334h es_ES
dc.description.references Diagne, C., Idriss, H., & Kiennemann, A. (2002). Hydrogen production by ethanol reforming over Rh/CeO2–ZrO2 catalysts. Catalysis Communications, 3(12), 565-571. doi:10.1016/s1566-7367(02)00226-1 es_ES
dc.description.references Llorca, J., de la Piscina, P. R., Dalmon, J.-A., Sales, J., & Homs, N. (2003). CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts. Applied Catalysis B: Environmental, 43(4), 355-369. doi:10.1016/s0926-3373(02)00326-0 es_ES
dc.description.references Batista, M. S., Santos, R. K. ., Assaf, E. M., Assaf, J. M., & Ticianelli, E. A. (2004). High efficiency steam reforming of ethanol by cobalt-based catalysts. Journal of Power Sources, 134(1), 27-32. doi:10.1016/j.jpowsour.2004.01.052 es_ES
dc.description.references Kaddouri, A., & Mazzocchia, C. (2004). A study of the influence of the synthesis conditions upon the catalytic properties of Co/SiO2 or Co/Al2O3 catalysts used for ethanol steam reforming. Catalysis Communications, 5(6), 339-345. doi:10.1016/j.catcom.2004.03.008 es_ES
dc.description.references Llorca, J., Dalmon, J.-A., Ramı́rez de la Piscina, P., & Homs, N. (2003). In situ magnetic characterisation of supported cobalt catalysts under steam-reforming of ethanol. Applied Catalysis A: General, 243(2), 261-269. doi:10.1016/s0926-860x(02)00546-x es_ES
dc.description.references Idriss, H. (2004). Ethanol Reactions over the Surfaces of Noble Metal/Cerium Oxide Catalysts. Platinum Metals Review, 48(3), 105-115. doi:10.1595/147106704x1603 es_ES
dc.description.references Bussi, J., Bespalko, N., Veiga, S., Amaya, A., Faccio, R., & Abello, M. C. (2008). The preparation and properties of Ni–La–Zr catalysts for the steam reforming of ethanol. Catalysis Communications, 10(1), 33-38. doi:10.1016/j.catcom.2008.07.028 es_ES
dc.description.references Sun, G. B., Hidajat, K., Wu, X. S., & Kawi, S. (2008). A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts. Applied Catalysis B: Environmental, 81(3-4), 303-312. doi:10.1016/j.apcatb.2007.12.021 es_ES
dc.description.references PEREIRA, E., HOMS, N., MARTI, S., FIERRO, J., & RAMIREZDELAPISCINA, P. (2008). Oxidative steam-reforming of ethanol over Co/SiO2, Co–Rh/SiO2 and Co–Ru/SiO2 catalysts: Catalytic behavior and deactivation/regeneration processes. Journal of Catalysis, 257(1), 206-214. doi:10.1016/j.jcat.2008.05.001 es_ES
dc.description.references Fajardo, H. V., Probst, L. F. D., Carreño, N. L. V., Garcia, I. T. S., & Valentini, A. (2007). Hydrogen Production from Ethanol Steam Reforming Over Ni/CeO2 Nanocomposite Catalysts. Catalysis Letters, 119(3-4), 228-236. doi:10.1007/s10562-007-9222-6 es_ES
dc.description.references Cavallaro, S. (2000). Ethanol Steam Reforming on Rh/Al2O3Catalysts. Energy & Fuels, 14(6), 1195-1199. doi:10.1021/ef0000779 es_ES
dc.description.references Fierro, V., Klouz, V., Akdim, O., & Mirodatos, C. (2002). Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications. Catalysis Today, 75(1-4), 141-144. doi:10.1016/s0920-5861(02)00056-1 es_ES
dc.description.references Velu, S., Satoh, N., Gopinath, C. S., & Suzuki, K. (2002). Catalysis Letters, 82(1/2), 145-152. doi:10.1023/a:1020516830768 es_ES
dc.description.references Goula, M. A., Kontou, S. K., & Tsiakaras, P. E. (2004). Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al2O3 catalyst. Applied Catalysis B: Environmental, 49(2), 135-144. doi:10.1016/j.apcatb.2003.12.001 es_ES
dc.description.references Sheng, P. Y., & Idriss, H. (2004). Ethanol reactions over Au–Rh/CeO2 catalysts. Total decomposition and H2 formation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 22(4), 1652-1658. doi:10.1116/1.1705591 es_ES
dc.description.references Srinivas, D., Satyanarayana, C. V. V., Potdar, H. S., & Ratnasamy, P. (2003). Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol. Applied Catalysis A: General, 246(2), 323-334. doi:10.1016/s0926-860x(03)00085-1 es_ES
dc.description.references Galvita, V. V., Belyaev, V. D., Semikolenov, V. A., Tsiakaras, P., Frumin, A., & Sobyanin, V. A. (2002). Reaction Kinetics and Catalysis Letters, 76(2), 343-351. doi:10.1023/a:1016500431269 es_ES
dc.description.references Platon, A., Roh, H.-S., King, D. L., & Wang, Y. (2007). Deactivation Studies of Rh/Ce0.8Zr0.2O2 Catalysts in Low Temperature Ethanol Steam Reforming. Topics in Catalysis, 46(3-4), 374-379. doi:10.1007/s11244-007-9007-6 es_ES
dc.description.references Birot, A., Epron, F., Descorme, C., & Duprez, D. (2008). Ethanol steam reforming over Rh/CexZr1−xO2 catalysts: Impact of the CO–CO2–CH4 interconversion reactions on the H2 production. Applied Catalysis B: Environmental, 79(1), 17-25. doi:10.1016/j.apcatb.2007.10.002 es_ES
dc.description.references CAI, W., WANG, F., ZHAN, E., VANVEEN, A., MIRODATOS, C., & SHEN, W. (2008). Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming. Journal of Catalysis, 257(1), 96-107. doi:10.1016/j.jcat.2008.04.009 es_ES
dc.description.references Dömök, M., Baán, K., Kecskés, T., & Erdőhelyi, A. (2008). Promoting Mechanism of Potassium in the Reforming of Ethanol on Pt/Al2O3 Catalyst. Catalysis Letters, 126(1-2), 49-57. doi:10.1007/s10562-008-9616-0 es_ES
dc.description.references Cornaglia, L. M., & Lombardo, E. A. (2008). Preface. Topics in Catalysis, 51(1-4), 1-1. doi:10.1007/s11244-008-9118-8 es_ES
dc.description.references Llorca, J., Homs, N., Sales, J., & de la Piscina, P. R. (2002). Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming. Journal of Catalysis, 209(2), 306-317. doi:10.1006/jcat.2002.3643 es_ES
dc.description.references Da Costa-Serra, J. F., Guil-López, R., & Chica, A. (2010). Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases. International Journal of Hydrogen Energy, 35(13), 6709-6716. doi:10.1016/j.ijhydene.2010.04.013 es_ES
dc.description.references Chica, A., & Sayas, S. (2009). Effective and stable bioethanol steam reforming catalyst based on Ni and Co supported on all-silica delaminated ITQ-2 zeolite. Catalysis Today, 146(1-2), 37-43. doi:10.1016/j.cattod.2008.12.024 es_ES
dc.description.references Campos-Skrobot, F. C., Rizzo-Domingues, R. C. P., Fernandes-Machado, N. R. C., & Cantão, M. P. (2008). Novel zeolite-supported rhodium catalysts for ethanol steam reforming. Journal of Power Sources, 183(2), 713-716. doi:10.1016/j.jpowsour.2008.05.066 es_ES
dc.description.references Inokawa, H., Nishimoto, S., Kameshima, Y., & Miyake, M. (2010). Difference in the catalytic activity of transition metals and their cations loaded in zeolite Y for ethanol steam reforming. International Journal of Hydrogen Energy, 35(21), 11719-11724. doi:10.1016/j.ijhydene.2010.08.092 es_ES
dc.description.references Da Costa-Serra, J. F., & Chica, A. (2011). Bioethanol steam reforming on Co/ITQ-18 catalyst: Effect of the crystalline structure of the delaminated zeolite ITQ-18. International Journal of Hydrogen Energy, 36(6), 3862-3869. doi:10.1016/j.ijhydene.2010.12.094 es_ES
dc.description.references Corma, A., Fornés, V., & Díaz, U. (2001). Chemical Communications, (24), 2642-2643. doi:10.1039/b108777k es_ES
dc.description.references Kwak, B. S., Lee, J. S., Lee, J. S., Choi, B.-H., Ji, M. J., & Kang, M. (2011). Hydrogen-rich gas production from ethanol steam reforming over Ni/Ga/Mg/Zeolite Y catalysts at mild temperature. Applied Energy, 88(12), 4366-4375. doi:10.1016/j.apenergy.2011.05.017 es_ES
dc.description.references Inokawa, H., Nishimoto, S., Kameshima, Y., & Miyake, M. (2011). Promotion of H2 production from ethanol steam reforming by zeolite basicity. International Journal of Hydrogen Energy, 36(23), 15195-15202. doi:10.1016/j.ijhydene.2011.08.099 es_ES
dc.description.references Lee, J.-S., Kim, J.-E., & Kang, M.-S. (2011). Hydrogen Production from Ethanol Steam Reforming over SnO2-K2O/Zeolite Y Catalyst. Bulletin of the Korean Chemical Society, 32(6), 1912-1920. doi:10.5012/bkcs.2011.32.6.1912 es_ES
dc.description.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.description.references Inagaki, S., Fukushima, Y., & Kuroda, K. (1993). Synthesis of highly ordered mesoporous materials from a layered polysilicate. Journal of the Chemical Society, Chemical Communications, (8), 680. doi:10.1039/c39930000680 es_ES
dc.description.references Tao, Y., Kanoh, H., Abrams, L., & Kaneko, K. (2006). Mesopore-Modified Zeolites:  Preparation, Characterization, and Applications. Chemical Reviews, 106(3), 896-910. doi:10.1021/cr040204o es_ES
dc.description.references Pérez-Ramírez, J., Christensen, C. H., Egeblad, K., Christensen, C. H., & Groen, J. C. (2008). Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 37(11), 2530. doi:10.1039/b809030k es_ES
dc.description.references Ogura, M. (2008). Towards Realization of a Micro- and Mesoporous Composite Silicate Catalyst. Catalysis Surveys from Asia, 12(1), 16-27. doi:10.1007/s10563-007-9037-x es_ES
dc.description.references Corma, A. (1989). Application of Zeolites in Fluid Catalytic Cracking and Related Processes. Zeolites: Facts, Figures, Future Part A - Proceedings of the 8th International Zeolite Conference, 49-67. doi:10.1016/s0167-2991(08)61708-5 es_ES
dc.description.references Groen, J. C., Moulijn, J. A., & Pérez-Ramírez, J. (2006). Desilication: on the controlled generation of mesoporosity in MFI zeolites. J. Mater. Chem., 16(22), 2121-2131. doi:10.1039/b517510k es_ES
dc.description.references Verboekend, D., & Pérez-Ramírez, J. (2011). Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 1(6), 879. doi:10.1039/c1cy00150g es_ES
dc.description.references Groen, J. ., Peffer, L. A. ., Moulijn, J. ., & Pérez-Ramı́rez, J. (2004). Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 241(1-3), 53-58. doi:10.1016/j.colsurfa.2004.04.012 es_ES
dc.description.references Groen, J. C., Caicedo-Realpe, R., Abelló, S., & Pérez-Ramírez, J. (2009). Mesoporous metallosilicate zeolites by desilication: On the generic pore-inducing role of framework trivalent heteroatoms. Materials Letters, 63(12), 1037-1040. doi:10.1016/j.matlet.2009.02.001 es_ES
dc.description.references Tao, Y., Kanoh, H., & Kaneko, K. (2006). Developments and structures of mesopores in alkaline-treated ZSM-5 zeolites. Adsorption, 12(5-6), 309-316. doi:10.1007/s10450-006-0561-1 es_ES
dc.description.references Otten, M. M., Clayton, M. J., & Lamb, H. H. (1994). Platinum-Mordenite Catalysts for n-Hexane Isomerization: Characterization by X-Ray Absorption Spectroscopy and Chemical Probes. Journal of Catalysis, 149(1), 211-222. doi:10.1006/jcat.1994.1287 es_ES
dc.description.references Carvill, B. T., Lerner, B. A., Adelman, B. J., Tomczak, D. C., & Sachtler, W. M. H. (1993). Increased Catalytic Activity Caused by Local Destruction of Linear Zeolite Channels: Effect of Reduction Temperature on Heptane Conversion over Platinum Supported in H-Mordenite. Journal of Catalysis, 144(1), 1-8. doi:10.1006/jcat.1993.1308 es_ES
dc.description.references Holm, M. S., Taarning, E., Egeblad, K., & Christensen, C. H. (2011). Catalysis with hierarchical zeolites. Catalysis Today, 168(1), 3-16. doi:10.1016/j.cattod.2011.01.007 es_ES
dc.description.references Park, D. H., Kim, S. S., Wang, H., Pinnavaia, T. J., Papapetrou, M. C., Lappas, A. A., & Triantafyllidis, K. S. (2009). Selective Petroleum Refining Over a Zeolite Catalyst with Small Intracrystal Mesopores. Angewandte Chemie International Edition, 48(41), 7645-7648. doi:10.1002/anie.200901551 es_ES
dc.description.references Park, H. J., Park, K.-H., Jeon, J.-K., Kim, J., Ryoo, R., Jeong, K.-E., … Park, Y.-K. (2012). Production of phenolics and aromatics by pyrolysis of miscanthus. Fuel, 97, 379-384. doi:10.1016/j.fuel.2012.01.075 es_ES
dc.description.references Foster, A. J., Jae, J., Cheng, Y.-T., Huber, G. W., & Lobo, R. F. (2012). Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Applied Catalysis A: General, 423-424, 154-161. doi:10.1016/j.apcata.2012.02.030 es_ES
dc.description.references Neumann, G. T., & Hicks, J. C. (2012). Novel Hierarchical Cerium-Incorporated MFI Zeolite Catalysts for the Catalytic Fast Pyrolysis of Lignocellulosic Biomass. ACS Catalysis, 2(4), 642-646. doi:10.1021/cs200648q es_ES
dc.description.references Paixão, V., Carvalho, A. P., Rocha, J., Fernandes, A., & Martins, A. (2010). Modification of MOR by desilication treatments: Structural, textural and acidic characterization. Microporous and Mesoporous Materials, 131(1-3), 350-357. doi:10.1016/j.micromeso.2010.01.013 es_ES
dc.description.references Da Costa-Serra, J. F., Navarro, M. T., Rey, F., & Chica, A. (2012). Bioethanol steam reforming on Ni-based modified mordenite. Effect of mesoporosity, acid sites and alkaline metals. International Journal of Hydrogen Energy, 37(8), 7101-7108. doi:10.1016/j.ijhydene.2011.10.086 es_ES
dc.description.references Cortright, R. D., Davda, R. R., & Dumesic, J. A. (2002). Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 418(6901), 964-967. doi:10.1038/nature01009 es_ES
dc.description.references Davda, R. R., Shabaker, J. W., Huber, G. W., Cortright, R. D., & Dumesic, J. A. (2005). A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis B: Environmental, 56(1-2), 171-186. doi:10.1016/j.apcatb.2004.04.027 es_ES
dc.description.references Huber, G. W., & Dumesic, J. A. (2006). An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis Today, 111(1-2), 119-132. doi:10.1016/j.cattod.2005.10.010 es_ES
dc.description.references Tang, Z., Monroe, J., Dong, J., Nenoff, T., & Weinkauf, D. (2009). Platinum-Loaded NaY Zeolite for Aqueous-Phase Reforming of Methanol and Ethanol to Hydrogen. Industrial & Engineering Chemistry Research, 48(5), 2728-2733. doi:10.1021/ie801222f es_ES
dc.description.references Lewis, N. S., & Nocera, D. G. (2006). Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, 103(43), 15729-15735. doi:10.1073/pnas.0603395103 es_ES
dc.description.references Chen, X., Shen, S., Guo, L., & Mao, S. S. (2010). Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 110(11), 6503-6570. doi:10.1021/cr1001645 es_ES
dc.description.references Kudo, A., & Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 38(1), 253-278. doi:10.1039/b800489g es_ES
dc.description.references FUJISHIMA, A., & HONDA, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38. doi:10.1038/238037a0 es_ES
dc.description.references Kudo, A., Kato, H., & Tsuji, I. (2004). Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting. Chemistry Letters, 33(12), 1534-1539. doi:10.1246/cl.2004.1534 es_ES
dc.description.references Domen, K., Naito, S., Onishi, T., & Tamaru, K. (1982). Photocatalytic decomposition of liquid water on a NiOSrTiO3 catalyst. Chemical Physics Letters, 92(4), 433-434. doi:10.1016/0009-2614(82)83443-x es_ES
dc.description.references Inoue, Y., Kubokawa, T., & Sato, K. (1990). Photocatalytic activity of sodium hexatitanate, Na2Ti6O13, with a tunnel structure for decomposition of water. Journal of the Chemical Society, Chemical Communications, (19), 1298. doi:10.1039/c39900001298 es_ES
dc.description.references Takata, T., Furumi, Y., Shinohara, K., Tanaka, A., Hara, M., Kondo, J. N., & Domen, K. (1997). Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites. Chemistry of Materials, 9(5), 1063-1064. doi:10.1021/cm960612b es_ES
dc.description.references Kudo, A., Sayama, K., Tanaka, A., Asakura, K., Domen, K., Maruya, K., & Onishi, T. (1989). Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and O2: Structure and reaction mechanism. Journal of Catalysis, 120(2), 337-352. doi:10.1016/0021-9517(89)90274-1 es_ES
dc.description.references Sayama, K., Tanaka, A., Domen, K., Maruya, K., & Onishi, T. (1991). Photocatalytic decomposition of water over platinum-intercalated potassium niobate (K4Nb6O17). The Journal of Physical Chemistry, 95(3), 1345-1348. doi:10.1021/j100156a058 es_ES
dc.description.references Kudo, A., & Kato, H. (1997). Photocatalytic Decomposition of Water into H2and O2over Novel Photocatalyst K3Ta3Si2O13with Pillared Structure Consisting of Three TaO6Chains. Chemistry Letters, 26(9), 867-868. doi:10.1246/cl.1997.867 es_ES
dc.description.references Ishihara, T., Nishiguchi, H., Fukamachi, K., & Takita, Y. (1999). Effects of Acceptor Doping to KTaO3on Photocatalytic Decomposition of Pure H2O. The Journal of Physical Chemistry B, 103(1), 1-3. doi:10.1021/jp983590k es_ES
dc.description.references Kudo, A., Kato, H., & Nakagawa, S. (2000). Water Splitting into H2and O2on New Sr2M2O7(M = Nb and Ta) Photocatalysts with Layered Perovskite Structures:  Factors Affecting the Photocatalytic Activity. The Journal of Physical Chemistry B, 104(3), 571-575. doi:10.1021/jp9919056 es_ES
dc.description.references Kato, H., & Kudo, A. (2001). Water Splitting into H2and O2on Alkali Tantalate Photocatalysts ATaO3(A = Li, Na, and K). The Journal of Physical Chemistry B, 105(19), 4285-4292. doi:10.1021/jp004386b es_ES
dc.description.references Kato, H., Asakura, K., & Kudo, A. (2003). Highly Efficient Water Splitting into H2and O2over Lanthanum-Doped NaTaO3Photocatalysts with High Crystallinity and Surface Nanostructure. Journal of the American Chemical Society, 125(10), 3082-3089. doi:10.1021/ja027751g es_ES
dc.description.references Zou, Z., Ye, J., Sayama, K., & Arakawa, H. (2001). Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 414(6864), 625-627. doi:10.1038/414625a es_ES
dc.description.references Machida, M., Yabunaka, J., & Kijima, T. (2000). Synthesis and Photocatalytic Property of Layered Perovskite Tantalates, RbLnTa2O7(Ln = La, Pr, Nd, and Sm). Chemistry of Materials, 12(3), 812-817. doi:10.1021/cm990577j es_ES
dc.description.references Kato, H., & Kudo, A. (2002). Visible-Light-Response and Photocatalytic Activities of TiO2and SrTiO3Photocatalysts Codoped with Antimony and Chromium. The Journal of Physical Chemistry B, 106(19), 5029-5034. doi:10.1021/jp0255482 es_ES
dc.description.references Ishii, T., Kato, H., & Kudo, A. (2004). H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 163(1-2), 181-186. doi:10.1016/s1010-6030(03)00442-8 es_ES
dc.description.references Tsuji, I., Kato, H., Kobayashi, H., & Kudo, A. (2004). Photocatalytic H2Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures. Journal of the American Chemical Society, 126(41), 13406-13413. doi:10.1021/ja048296m es_ES
dc.description.references Tsuji, I., Kato, H., & Kudo, A. (2006). Photocatalytic Hydrogen Evolution on ZnS−CuInS2−AgInS2Solid Solution Photocatalysts with Wide Visible Light Absorption Bands. Chemistry of Materials, 18(7), 1969-1975. doi:10.1021/cm0527017 es_ES
dc.description.references YAMASITA, D. (2004). Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ionics, 172(1-4), 591-595. doi:10.1016/j.ssi.2004.04.033 es_ES
dc.description.references Niishiro, R., Kato, H., & Kudo, A. (2005). Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Physical Chemistry Chemical Physics, 7(10), 2241. doi:10.1039/b502147b es_ES
dc.description.references Tsuji, I., & Kudo, A. (2003). H2 evolution from aqueous sulfite solutions under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 156(1-3), 249-252. doi:10.1016/s1010-6030(02)00433-1 es_ES
dc.description.references Diwald, O., Thompson, T. L., Goralski, E. G., Walck, S. D., & Yates, J. T. (2004). The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2Rutile Single Crystals. The Journal of Physical Chemistry B, 108(1), 52-57. doi:10.1021/jp030529t es_ES
dc.description.references Konta, R., Ishii, T., Kato, H., & Kudo, A. (2004). Photocatalytic Activities of Noble Metal Ion Doped SrTiO3under Visible Light Irradiation. The Journal of Physical Chemistry B, 108(26), 8992-8995. doi:10.1021/jp049556p es_ES
dc.description.references Tsuji, I., Kato, H., & Kudo, A. (2005). Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS-CuInS2-AgInS2 Solid-Solution Photocatalyst. Angewandte Chemie International Edition, 44(23), 3565-3568. doi:10.1002/anie.200500314 es_ES
dc.description.references Thompson, T. L., & Yates, J. T. (2006). Surface Science Studies of the Photoactivation of TiO2New Photochemical Processes. Chemical Reviews, 106(10), 4428-4453. doi:10.1021/cr050172k es_ES
dc.description.references Gole, J. L., Stout, J. D., Burda, C., Lou, Y., & Chen, X. (2004). Highly Efficient Formation of Visible Light Tunable TiO2-xNxPhotocatalysts and Their Transformation at the Nanoscale. The Journal of Physical Chemistry B, 108(4), 1230-1240. doi:10.1021/jp030843n es_ES
dc.description.references Di Valentin, C., Pacchioni, G., & Selloni, A. (2004). Origin of the different photoactivity ofN-doped anatase and rutileTiO2. Physical Review B, 70(8). doi:10.1103/physrevb.70.085116 es_ES
dc.description.references (s. f.). doi:10.1021/jp025961 es_ES
dc.description.references Shangguan, W., & Yoshida, A. (2002). Photocatalytic Hydrogen Evolution from Water on Nanocomposites Incorporating Cadmium Sulfide into the Interlayer. The Journal of Physical Chemistry B, 106(47), 12227-12230. doi:10.1021/jp0212500 es_ES
dc.description.references Koca, A. (2002). Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution. International Journal of Hydrogen Energy, 27(4), 363-367. doi:10.1016/s0360-3199(01)00133-1 es_ES
dc.description.references Milczarek, G., Kasuya, A., Mamykin, S., Arai, T., Shinoda, K., & Tohji, K. (2003). Optimization of a two-compartment photoelectrochemical cell for solar hydrogen production. International Journal of Hydrogen Energy, 28(9), 919-926. doi:10.1016/s0360-3199(02)00171-4 es_ES
dc.description.references Ni, M., Leung, M. K. H., Leung, D. Y. C., & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11(3), 401-425. doi:10.1016/j.rser.2005.01.009 es_ES
dc.description.references Matsuoka, M., Kitano, M., Takeuchi, M., Tsujimaru, K., Anpo, M., & Thomas, J. M. (2007). Photocatalysis for new energy production. Catalysis Today, 122(1-2), 51-61. doi:10.1016/j.cattod.2007.01.042 es_ES
dc.description.references Bak, T., Nowotny, J., Rekas, M., & Sorrell, C. . (2002). Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. International Journal of Hydrogen Energy, 27(10), 991-1022. doi:10.1016/s0360-3199(02)00022-8 es_ES
dc.description.references Shaban, Y. A., & Khan, S. U. M. (2008). Visible light active carbon modified n-TiO2 for efficient hydrogen production by photoelectrochemical splitting of water. International Journal of Hydrogen Energy, 33(4), 1118-1126. doi:10.1016/j.ijhydene.2007.11.026 es_ES
dc.description.references Lin, H.-Y., Lee, T.-H., & Sie, C.-Y. (2008). Photocatalytic hydrogen production with nickel oxide intercalated K4Nb6O17 under visible light irradiation. International Journal of Hydrogen Energy, 33(15), 4055-4063. doi:10.1016/j.ijhydene.2008.05.050 es_ES
dc.description.references LIN, H., CHEN, Y., & CHEN, Y. (2007). Water splitting reaction on NiO/InVO4 under visible light irradiation. International Journal of Hydrogen Energy, 32(1), 86-92. doi:10.1016/j.ijhydene.2006.04.007 es_ES
dc.description.references LUNAWAT, P., SENAPATI, S., KUMAR, R., & GUPTA, N. (2007). Visible light-induced splitting of water using CdS nanocrystallites immobilized over water-repellant polymeric surface. International Journal of Hydrogen Energy, 32(14), 2784-2790. doi:10.1016/j.ijhydene.2007.04.001 es_ES
dc.description.references SATHISH, M., VISWANATHAN, B., & VISWANATH, R. (2006). Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting. International Journal of Hydrogen Energy, 31(7), 891-898. doi:10.1016/j.ijhydene.2005.08.002 es_ES
dc.description.references KORICHE, N., BOUGUELIA, A., AIDER, A., & TRARI, M. (2005). Photocatalytic hydrogen evolution over delafossite. International Journal of Hydrogen Energy, 30(7), 693-699. doi:10.1016/j.ijhydene.2004.06.011 es_ES
dc.description.references Ye, J. (2003). A novel series of water splitting photocatalysts NiM2O6 (M=Nb,Ta) active under visible light. International Journal of Hydrogen Energy, 28(6), 651-655. doi:10.1016/s0360-3199(02)00158-1 es_ES
dc.description.references Bessekhouad, Y. (2002). Photocatalytic hydrogen production from suspension of spinel powders AMn2O4(A=Cu and Zn). International Journal of Hydrogen Energy, 27(4), 357-362. doi:10.1016/s0360-3199(01)00159-8 es_ES
dc.description.references Dutta, P. K., & Turbeville, W. (1992). Intrazeolitic photoinduced redox reactions between tris(2,2’-bipyridine)ruthenium(2+) and methylviologen. The Journal of Physical Chemistry, 96(23), 9410-9416. doi:10.1021/j100202a064 es_ES
dc.description.references Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y., & Honda, M. (1997). Photocatalytic Reduction of CO2with H2O on Titanium Oxides Anchored within Micropores of Zeolites:  Effects of the Structure of the Active Sites and the Addition of Pt. The Journal of Physical Chemistry B, 101(14), 2632-2636. doi:10.1021/jp962696h es_ES
dc.description.references Anpo, M., Shioya, Y., Yamashita, H., Giamello, E., Morterra, C., Che, M., … Ouellette, S. (1994). Preparation and Characterization of the Cu+/ZSM-5 Catalyst and Its Reaction with NO under UV Irradiation at 275 K. In situ Photoluminescence, EPR, and FT-IR Investigations. The Journal of Physical Chemistry, 98(22), 5744-5750. doi:10.1021/j100073a029 es_ES
dc.description.references Yamashita, H., Ichihashi, Y., Anpo, M., Hashimoto, M., Louis, C., & Che, M. (1996). Photocatalytic Decomposition of NO at 275 K on Titanium Oxides Included within Y-Zeolite Cavities:  The Structure and Role of the Active Sites. The Journal of Physical Chemistry, 100(40), 16041-16044. doi:10.1021/jp9615969 es_ES
dc.description.references Chen, H., Matsumoto, A., Nishimiya, N., & Tsutsumi, K. (1999). Preparation and characterization of TiO2 incorporated Y-zeolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 157(1-3), 295-305. doi:10.1016/s0927-7757(99)00052-7 es_ES
dc.description.references Liu, X., Iu, K.-K., & Kerry Thomas, J. (1992). Encapsulation of TiO2 in zeolite Y. Chemical Physics Letters, 195(2-3), 163-168. doi:10.1016/0009-2614(92)86129-6 es_ES
dc.description.references Liu, X., Iu, K.-K., & Thomas, J. K. (1993). Preparation, characterization and photoreactivity of titanium(IV) oxide encapsulated in zeolites. Journal of the Chemical Society, Faraday Transactions, 89(11), 1861. doi:10.1039/ft9938901861 es_ES
dc.description.references Kim, Y., & Yoon, M. (2001). TiO2/Y-Zeolite encapsulating intramolecular charge transfer molecules: a new photocatalyst for photoreduction of methyl orange in aqueous medium. Journal of Molecular Catalysis A: Chemical, 168(1-2), 257-263. doi:10.1016/s1381-1169(00)00541-0 es_ES
dc.description.references Chen, X., & Mao, S. S. (2007). Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 107(7), 2891-2959. doi:10.1021/cr0500535 es_ES
dc.description.references Ikeda, S., Tanaka, A., Shinohara, K., Hara, M., Kondo, J. N., Maruya, K., & Domen, K. (1997). Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K4Nb6O17. Microporous Materials, 9(5-6), 253-258. doi:10.1016/s0927-6513(96)00112-5 es_ES
dc.description.references Hidalgo, M. C., Aguilar, M., Maicu, M., Navío, J. A., & Colón, G. (2007). Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catalysis Today, 129(1-2), 50-58. doi:10.1016/j.cattod.2007.06.053 es_ES
dc.description.references (s. f.). doi:10.1021/ja067050 es_ES
dc.description.references Datta, A., Priyam, A., Bhattacharyya, S. N., Mukherjea, K. K., & Saha, A. (2008). Temperature tunability of size in CdS nanoparticles and size dependent photocatalytic degradation of nitroaromatics. Journal of Colloid and Interface Science, 322(1), 128-135. doi:10.1016/j.jcis.2008.02.052 es_ES
dc.description.references Chae, S. Y., Park, M. K., Lee, S. K., Kim, T. Y., Kim, S. K., & Lee, W. I. (2003). Preparation of Size-Controlled TiO2Nanoparticles and Derivation of Optically Transparent Photocatalytic Films. Chemistry of Materials, 15(17), 3326-3331. doi:10.1021/cm030171d es_ES
dc.description.references Liu, G., Sun, C., Yang, H. G., Smith, S. C., Wang, L., Lu, G. Q. (Max), & Cheng, H.-M. (2010). Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem. Commun., 46(5), 755-757. doi:10.1039/b919895d es_ES
dc.description.references Lee, Y., Watanabe, T., Takata, T., Hara, M., Yoshimura, M., & Domen, K. (2007). Hydrothermal Synthesis of Fine NaTaO3Powder as a Highly Efficient Photocatalyst for Overall Water Splitting. Bulletin of the Chemical Society of Japan, 80(2), 423-428. doi:10.1246/bcsj.80.423 es_ES
dc.description.references (s. f.). doi:10.1021/jp982948 es_ES
dc.description.references Sun, W., Zhang, S., Liu, Z., Wang, C., & Mao, Z. (2008). Studies on the enhanced photocatalytic hydrogen evolution over Pt/PEG-modified TiO2 photocatalysts. International Journal of Hydrogen Energy, 33(4), 1112-1117. doi:10.1016/j.ijhydene.2007.12.059 es_ES
dc.description.references Bahnemann, D. W., Kormann, C., & Hoffmann, M. R. (1987). Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study. The Journal of Physical Chemistry, 91(14), 3789-3798. doi:10.1021/j100298a015 es_ES
dc.description.references Hoffman, A. J., Carraway, E. R., & Hoffmann, M. R. (1994). Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Colloids. Environmental Science & Technology, 28(5), 776-785. doi:10.1021/es00054a006 es_ES
dc.description.references Hoffman, A. J., Mills, G., Yee, H., & Hoffmann, M. R. (1992). Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. The Journal of Physical Chemistry, 96(13), 5546-5552. doi:10.1021/j100192a067 es_ES
dc.description.references Hoffman, A. J., Yee, H., Mills, G., & Hoffmann, M. R. (1992). Photoinitiated polymerization of methyl methacrylate using Q-sized zinc oxide colloids. The Journal of Physical Chemistry, 96(13), 5540-5546. doi:10.1021/j100192a066 es_ES
dc.description.references Fox, M. A., & Pettit, T. L. (1989). Photoactivity of zeolite-supported cadmium sulfide: hydrogen evolution in the presence of sacrificial donors. Langmuir, 5(4), 1056-1061. doi:10.1021/la00088a032 es_ES
dc.description.references Warrier, M., Lo, M. K. F., Monbouquette, H., & Garcia-Garibay, M. A. (2004). Photocatalytic reduction of aromatic azides to amines using CdS and CdSe nanoparticlesElectronic supplementary information (ESI) available: The preparation of CdS and CdSe nanoparticles, the synthesis of aromatic azides, procedures for the photocatalyzed reduction of aromatic azides, and procedures for the quantum yield measurements. See http://www.rsc.org/suppdata/pp/b4/b404268a/. Photochemical & Photobiological Sciences, 3(9), 859. doi:10.1039/b404268a es_ES
dc.description.references Ryu, S. Y., Balcerski, W., Lee, T. K., & Hoffmann, M. R. (2007). Photocatalytic Production of Hydrogen from Water with Visible Light Using Hybrid Catalysts of CdS Attached to Microporous and Mesoporous Silicas. The Journal of Physical Chemistry C, 111(49), 18195-18203. doi:10.1021/jp074860e es_ES
dc.description.references Ryu, S. Y., Choi, J., Balcerski, W., Lee, T. K., & Hoffmann, M. R. (2007). Photocatalytic Production of H2on Nanocomposite Catalysts. Industrial & Engineering Chemistry Research, 46(23), 7476-7488. doi:10.1021/ie0703033 es_ES
dc.description.references YUE, P., & KHAN, F. (1991). Methods for increasing photo-assisted production of hydrogen over titanium exchanged zeolites. International Journal of Hydrogen Energy, 16(9), 609-613. doi:10.1016/0360-3199(91)90084-v es_ES
dc.description.references Guan, G., Kida, T., Kusakabe, K., Kimura, K., Fang, X., Ma, T., … Yoshida, A. (2004). Photocatalytic H2 evolution under visible light irradiation on CdS/ETS-4 composite. Chemical Physics Letters, 385(3-4), 319-322. doi:10.1016/j.cplett.2004.01.002 es_ES
dc.description.references DUBEY, N., RAYALU, S., LABHSETWAR, N., & DEVOTTA, S. (2008). Visible light active zeolite-based photocatalysts for hydrogen evolution from water. International Journal of Hydrogen Energy, 33(21), 5958-5966. doi:10.1016/j.ijhydene.2008.05.095 es_ES
dc.description.references White, J. C., & Dutta, P. K. (2011). Assembly of Nanoparticles in Zeolite Y for the Photocatalytic Generation of Hydrogen from Water. The Journal of Physical Chemistry C, 115(7), 2938-2947. doi:10.1021/jp108336a es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem