- -

Zeolites: Promised Materials for the Sustainable Production of Hydrogen

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Zeolites: Promised Materials for the Sustainable Production of Hydrogen

Mostrar el registro completo del ítem

Chica, A. (2013). Zeolites: Promised Materials for the Sustainable Production of Hydrogen. ISRN Chemical Engineering. (907425):1-19. doi:10.1155/2013/907425

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68036

Ficheros en el ítem

Metadatos del ítem

Título: Zeolites: Promised Materials for the Sustainable Production of Hydrogen
Autor: Chica, Antonio
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
Zeolites have been shown to be useful catalysts in a large variety of reactions, from acid to base and redox catalysis. ð£e particular properties of these materials (high surface area, uniform porosity, interconnected ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
ISRN Chemical Engineering. (issn: 2090-861X )
DOI: 10.1155/2013/907425
Editorial:
Hindawi Publishing Corporation
Versión del editor: http://dx.doi.org/10.1155/2013/907425
Tipo: Artículo

References

Barrer, R. M., & Ibbitson, D. A. (1944). Occlusion of hydrocarbons by chabazite and analcite. Transactions of the Faraday Society, 40, 195. doi:10.1039/tf9444000195

Breck, D. W. (1964). Crystalline molecular sieves. Journal of Chemical Education, 41(12), 678. doi:10.1021/ed041p678

Rabo, J. A. (1981). Unifying Principles in Zeolite Chemistry and Catalysis. Catalysis Reviews, 23(1-2), 293-313. doi:10.1080/03602458108068080 [+]
Barrer, R. M., & Ibbitson, D. A. (1944). Occlusion of hydrocarbons by chabazite and analcite. Transactions of the Faraday Society, 40, 195. doi:10.1039/tf9444000195

Breck, D. W. (1964). Crystalline molecular sieves. Journal of Chemical Education, 41(12), 678. doi:10.1021/ed041p678

Rabo, J. A. (1981). Unifying Principles in Zeolite Chemistry and Catalysis. Catalysis Reviews, 23(1-2), 293-313. doi:10.1080/03602458108068080

NEWSAM, J. M. (1986). The Zeolite Cage Structure. Science, 231(4742), 1093-1099. doi:10.1126/science.231.4742.1093

Freyhardt, C. C., Tsapatsis, M., Lobo, R. F., Balkus, K. J., & Davis, M. E. (1996). A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature, 381(6580), 295-298. doi:10.1038/381295a0

Lobo, R. F., Tsapatsis, M., Freyhardt, C. C., Khodabandeh, S., Wagner, P., Chen, C.-Y., … Davis, M. E. (1997). Characterization of the Extra-Large-Pore Zeolite UTD-1. Journal of the American Chemical Society, 119(36), 8474-8484. doi:10.1021/ja9708528

Wessels, T., Baerlocher, C., McCusker, L. B., & Creyghton, E. J. (1999). An Ordered Form of the Extra-Large-Pore Zeolite UTD-1:  Synthesis and Structure Analysis from Powder Diffraction Data. Journal of the American Chemical Society, 121(26), 6242-6247. doi:10.1021/ja9907717

Wagner, P., Yoshikawa, M., Tsuji, K., Davis, M. E., Wagner, P., Lovallo, M., & Taspatsis, M. (1997). CIT-5: a high-silica zeolite with 14-ring pores. Chemical Communications, (22), 2179-2180. doi:10.1039/a704774f

Burton, A., Elomari, S., Chen, C.-Y., Medrud, R. C., Chan, I. Y., Bull, L. M., … Vittoratos, E. S. (2003). SSZ-53 and SSZ-59: Two Novel Extra-Large Pore Zeolites. Chemistry - A European Journal, 9(23), 5737-5748. doi:10.1002/chem.200305238

Strohmaier, K. G., & Vaughan, D. E. W. (2003). Structure of the First Silicate Molecular Sieve with 18-Ring Pore Openings, ECR-34. Journal of the American Chemical Society, 125(51), 16035-16039. doi:10.1021/ja0371653

Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238

Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957

Davis, M. E., Saldarriaga, C., Montes, C., Garces, J., & Crowdert, C. (1988). A molecular sieve with eighteen-membered rings. Nature, 331(6158), 698-699. doi:10.1038/331698a0

Csicsery, S. M. (1984). Shape-selective catalysis in zeolites. Zeolites, 4(3), 202-213. doi:10.1016/0144-2449(84)90024-1

Derouane, E. G. (1980). New Aspects of Molecular Shape-Selectivity: Catalysis by Zeolite ZSM - 5. Catalysis by Zeolites, 5-18. doi:10.1016/s0167-2991(08)64860-0

Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006

Corma, A., & Martinez, A. (1995). Zeolites and Zeotypes as catalysts. Advanced Materials, 7(2), 137-144. doi:10.1002/adma.19950070206

KAEDING, W. (1981). Selective alkylation of toluene with methanol to produce para-Xylene. Journal of Catalysis, 67(1), 159-174. doi:10.1016/0021-9517(81)90269-4

ANDERSON, R. A. (1977). Molecular Sieve Adsorbent Applications State of the Art. ACS Symposium Series, 637-649. doi:10.1021/bk-1977-0040.ch053

Nováková, J., & Dolejšek, Z. (1990). A comment on the oxidation of coke deposited on zeolites. Zeolites, 10(3), 189-192. doi:10.1016/0144-2449(90)90044-r

Antunes, A. P., Ribeiro, M. F., Silva, J. M., Ribeiro, F. R., Magnoux, P., & Guisnet, M. (2001). Catalytic oxidation of toluene over CuNaHY zeolites. Applied Catalysis B: Environmental, 33(2), 149-164. doi:10.1016/s0926-3373(01)00174-6

SCHERZER, J. (1973). Infrared spectra of ultrastable zeolites derived from type Y zeolites*1. Journal of Catalysis, 28(1), 101-115. doi:10.1016/0021-9517(73)90184-x

Chen, N. Y. (1976). Hydrophobic properties of zeolites. The Journal of Physical Chemistry, 80(1), 60-64. doi:10.1021/j100542a013

Flanigen, E. M., Bennett, J. M., Grose, R. W., Cohen, J. P., Patton, R. L., Kirchner, R. M., & Smith, J. V. (1978). Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature, 271(5645), 512-516. doi:10.1038/271512a0

Scherzer, J., Bass, J. L., & Hunter, F. D. (1975). Structural characterization of hydrothermally treated lanthanum Y zeolites. I. Framework vibrational spectra and crystal structure. The Journal of Physical Chemistry, 79(12), 1194-1199. doi:10.1021/j100579a010

VENUTO, P., HAMILTON, L., & LANDIS, P. (1966). Organic reactions catalyzed by crystalline aluminosilicatesII. Alkylation reactions: Mechanistic and aging considerations. Journal of Catalysis, 5(3), 484-493. doi:10.1016/s0021-9517(66)80067-2

Ward, J. W. (1968). Spectroscopic study of the surface of zeolite Y. II. Infrared spectra of structural hydroxyl groups and adsorbed water on alkali, alkaline earth, and rare earth ion-exchanged zeolites. The Journal of Physical Chemistry, 72(12), 4211-4223. doi:10.1021/j100858a046

Ozin, G. A., Kuperman, A., & Stein, A. (1989). Advanced Zeolite, Materials Science. Angewandte Chemie International Edition in English, 28(3), 359-376. doi:10.1002/anie.198903591

Wang, Z., Wang, H., Mitra, A., Huang, L., & Yan, Y. (2001). Pure-Silica Zeolite Low-k Dielectric Thin Films. Advanced Materials, 13(10), 746-749. doi:10.1002/1521-4095(200105)13:10<746::aid-adma746>3.0.co;2-j

Pen˜a, M. A., Gómez, J. P., & Fierro, J. L. G. (1996). New catalytic routes for syngas and hydrogen production. Applied Catalysis A: General, 144(1-2), 7-57. doi:10.1016/0926-860x(96)00108-1

Armor, J. N. (1999). The multiple roles for catalysis in the production of H2. Applied Catalysis A: General, 176(2), 159-176. doi:10.1016/s0926-860x(98)00244-0

Trimm, D. L., & Önsan, Z. I. (2001). ONBOARD FUEL CONVERSION FOR HYDROGEN-FUEL-CELL-DRIVEN VEHICLES. Catalysis Reviews, 43(1-2), 31-84. doi:10.1081/cr-100104386

Navarro, R. M., Peña, M. A., & Fierro, J. L. G. (2007). Hydrogen Production Reactions from Carbon Feedstocks:  Fossil Fuels and Biomass. Chemical Reviews, 107(10), 3952-3991. doi:10.1021/cr0501994

HALLENBECK, P. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, 27(11-12), 1185-1193. doi:10.1016/s0360-3199(02)00131-3

Gardner, D. (2009). Hydrogen production from renewables. Renewable Energy Focus, 9(7), 34-37. doi:10.1016/s1755-0084(09)70036-5

Deluga, G. A. (2004). Renewable Hydrogen from Ethanol by Autothermal Reforming. Science, 303(5660), 993-997. doi:10.1126/science.1093045

Salge, J. R., Dreyer, B. J., Dauenhauer, P. J., & Schmidt, L. D. (2006). Renewable Hydrogen from Nonvolatile Fuels by Reactive Flash Volatilization. Science, 314(5800), 801-804. doi:10.1126/science.1131244

Navarro, R. M., Sánchez-Sánchez, M. C., Alvarez-Galvan, M. C., Valle, F. del, & Fierro, J. L. G. (2009). Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy Environ. Sci., 2(1), 35-54. doi:10.1039/b808138g

Vaidya, P. D., & Rodrigues, A. E. (2006). Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chemical Engineering Journal, 117(1), 39-49. doi:10.1016/j.cej.2005.12.008

Kolios, G., Glöckler, B., Gritsch, A., Morillo, A., & Eigenberger, G. (2005). Heat-Integrated Reactor Concepts for Hydrogen Production by Methane Steam Reforming. Fuel Cells, 5(1), 52-65. doi:10.1002/fuce.200400065

Haryanto, A., Fernando, S., Murali, N., & Adhikari, S. (2005). Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol:  A Review. Energy & Fuels, 19(5), 2098-2106. doi:10.1021/ef0500538

Ni, M., Leung, D. Y. C., & Leung, M. K. H. (2007). A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 32(15), 3238-3247. doi:10.1016/j.ijhydene.2007.04.038

FATSIKOSTAS, A. (2004). Reaction network of steam reforming of ethanol over Ni-based catalysts. Journal of Catalysis, 225(2), 439-452. doi:10.1016/j.jcat.2004.04.034

Llorca, J., Piscina, P. R. de la, Sales, J., & Homs, N. (2001). Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts. Chemical Communications, (7), 641-642. doi:10.1039/b100334h

Diagne, C., Idriss, H., & Kiennemann, A. (2002). Hydrogen production by ethanol reforming over Rh/CeO2–ZrO2 catalysts. Catalysis Communications, 3(12), 565-571. doi:10.1016/s1566-7367(02)00226-1

Llorca, J., de la Piscina, P. R., Dalmon, J.-A., Sales, J., & Homs, N. (2003). CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts. Applied Catalysis B: Environmental, 43(4), 355-369. doi:10.1016/s0926-3373(02)00326-0

Batista, M. S., Santos, R. K. ., Assaf, E. M., Assaf, J. M., & Ticianelli, E. A. (2004). High efficiency steam reforming of ethanol by cobalt-based catalysts. Journal of Power Sources, 134(1), 27-32. doi:10.1016/j.jpowsour.2004.01.052

Kaddouri, A., & Mazzocchia, C. (2004). A study of the influence of the synthesis conditions upon the catalytic properties of Co/SiO2 or Co/Al2O3 catalysts used for ethanol steam reforming. Catalysis Communications, 5(6), 339-345. doi:10.1016/j.catcom.2004.03.008

Llorca, J., Dalmon, J.-A., Ramı́rez de la Piscina, P., & Homs, N. (2003). In situ magnetic characterisation of supported cobalt catalysts under steam-reforming of ethanol. Applied Catalysis A: General, 243(2), 261-269. doi:10.1016/s0926-860x(02)00546-x

Idriss, H. (2004). Ethanol Reactions over the Surfaces of Noble Metal/Cerium Oxide Catalysts. Platinum Metals Review, 48(3), 105-115. doi:10.1595/147106704x1603

Bussi, J., Bespalko, N., Veiga, S., Amaya, A., Faccio, R., & Abello, M. C. (2008). The preparation and properties of Ni–La–Zr catalysts for the steam reforming of ethanol. Catalysis Communications, 10(1), 33-38. doi:10.1016/j.catcom.2008.07.028

Sun, G. B., Hidajat, K., Wu, X. S., & Kawi, S. (2008). A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts. Applied Catalysis B: Environmental, 81(3-4), 303-312. doi:10.1016/j.apcatb.2007.12.021

PEREIRA, E., HOMS, N., MARTI, S., FIERRO, J., & RAMIREZDELAPISCINA, P. (2008). Oxidative steam-reforming of ethanol over Co/SiO2, Co–Rh/SiO2 and Co–Ru/SiO2 catalysts: Catalytic behavior and deactivation/regeneration processes. Journal of Catalysis, 257(1), 206-214. doi:10.1016/j.jcat.2008.05.001

Fajardo, H. V., Probst, L. F. D., Carreño, N. L. V., Garcia, I. T. S., & Valentini, A. (2007). Hydrogen Production from Ethanol Steam Reforming Over Ni/CeO2 Nanocomposite Catalysts. Catalysis Letters, 119(3-4), 228-236. doi:10.1007/s10562-007-9222-6

Cavallaro, S. (2000). Ethanol Steam Reforming on Rh/Al2O3Catalysts. Energy & Fuels, 14(6), 1195-1199. doi:10.1021/ef0000779

Fierro, V., Klouz, V., Akdim, O., & Mirodatos, C. (2002). Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications. Catalysis Today, 75(1-4), 141-144. doi:10.1016/s0920-5861(02)00056-1

Velu, S., Satoh, N., Gopinath, C. S., & Suzuki, K. (2002). Catalysis Letters, 82(1/2), 145-152. doi:10.1023/a:1020516830768

Goula, M. A., Kontou, S. K., & Tsiakaras, P. E. (2004). Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al2O3 catalyst. Applied Catalysis B: Environmental, 49(2), 135-144. doi:10.1016/j.apcatb.2003.12.001

Sheng, P. Y., & Idriss, H. (2004). Ethanol reactions over Au–Rh/CeO2 catalysts. Total decomposition and H2 formation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 22(4), 1652-1658. doi:10.1116/1.1705591

Srinivas, D., Satyanarayana, C. V. V., Potdar, H. S., & Ratnasamy, P. (2003). Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol. Applied Catalysis A: General, 246(2), 323-334. doi:10.1016/s0926-860x(03)00085-1

Galvita, V. V., Belyaev, V. D., Semikolenov, V. A., Tsiakaras, P., Frumin, A., & Sobyanin, V. A. (2002). Reaction Kinetics and Catalysis Letters, 76(2), 343-351. doi:10.1023/a:1016500431269

Platon, A., Roh, H.-S., King, D. L., & Wang, Y. (2007). Deactivation Studies of Rh/Ce0.8Zr0.2O2 Catalysts in Low Temperature Ethanol Steam Reforming. Topics in Catalysis, 46(3-4), 374-379. doi:10.1007/s11244-007-9007-6

Birot, A., Epron, F., Descorme, C., & Duprez, D. (2008). Ethanol steam reforming over Rh/CexZr1−xO2 catalysts: Impact of the CO–CO2–CH4 interconversion reactions on the H2 production. Applied Catalysis B: Environmental, 79(1), 17-25. doi:10.1016/j.apcatb.2007.10.002

CAI, W., WANG, F., ZHAN, E., VANVEEN, A., MIRODATOS, C., & SHEN, W. (2008). Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming. Journal of Catalysis, 257(1), 96-107. doi:10.1016/j.jcat.2008.04.009

Dömök, M., Baán, K., Kecskés, T., & Erdőhelyi, A. (2008). Promoting Mechanism of Potassium in the Reforming of Ethanol on Pt/Al2O3 Catalyst. Catalysis Letters, 126(1-2), 49-57. doi:10.1007/s10562-008-9616-0

Cornaglia, L. M., & Lombardo, E. A. (2008). Preface. Topics in Catalysis, 51(1-4), 1-1. doi:10.1007/s11244-008-9118-8

Llorca, J., Homs, N., Sales, J., & de la Piscina, P. R. (2002). Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming. Journal of Catalysis, 209(2), 306-317. doi:10.1006/jcat.2002.3643

Da Costa-Serra, J. F., Guil-López, R., & Chica, A. (2010). Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases. International Journal of Hydrogen Energy, 35(13), 6709-6716. doi:10.1016/j.ijhydene.2010.04.013

Chica, A., & Sayas, S. (2009). Effective and stable bioethanol steam reforming catalyst based on Ni and Co supported on all-silica delaminated ITQ-2 zeolite. Catalysis Today, 146(1-2), 37-43. doi:10.1016/j.cattod.2008.12.024

Campos-Skrobot, F. C., Rizzo-Domingues, R. C. P., Fernandes-Machado, N. R. C., & Cantão, M. P. (2008). Novel zeolite-supported rhodium catalysts for ethanol steam reforming. Journal of Power Sources, 183(2), 713-716. doi:10.1016/j.jpowsour.2008.05.066

Inokawa, H., Nishimoto, S., Kameshima, Y., & Miyake, M. (2010). Difference in the catalytic activity of transition metals and their cations loaded in zeolite Y for ethanol steam reforming. International Journal of Hydrogen Energy, 35(21), 11719-11724. doi:10.1016/j.ijhydene.2010.08.092

Da Costa-Serra, J. F., & Chica, A. (2011). Bioethanol steam reforming on Co/ITQ-18 catalyst: Effect of the crystalline structure of the delaminated zeolite ITQ-18. International Journal of Hydrogen Energy, 36(6), 3862-3869. doi:10.1016/j.ijhydene.2010.12.094

Corma, A., Fornés, V., & Díaz, U. (2001). Chemical Communications, (24), 2642-2643. doi:10.1039/b108777k

Kwak, B. S., Lee, J. S., Lee, J. S., Choi, B.-H., Ji, M. J., & Kang, M. (2011). Hydrogen-rich gas production from ethanol steam reforming over Ni/Ga/Mg/Zeolite Y catalysts at mild temperature. Applied Energy, 88(12), 4366-4375. doi:10.1016/j.apenergy.2011.05.017

Inokawa, H., Nishimoto, S., Kameshima, Y., & Miyake, M. (2011). Promotion of H2 production from ethanol steam reforming by zeolite basicity. International Journal of Hydrogen Energy, 36(23), 15195-15202. doi:10.1016/j.ijhydene.2011.08.099

Lee, J.-S., Kim, J.-E., & Kang, M.-S. (2011). Hydrogen Production from Ethanol Steam Reforming over SnO2-K2O/Zeolite Y Catalyst. Bulletin of the Korean Chemical Society, 32(6), 1912-1920. doi:10.5012/bkcs.2011.32.6.1912

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0

Inagaki, S., Fukushima, Y., & Kuroda, K. (1993). Synthesis of highly ordered mesoporous materials from a layered polysilicate. Journal of the Chemical Society, Chemical Communications, (8), 680. doi:10.1039/c39930000680

Tao, Y., Kanoh, H., Abrams, L., & Kaneko, K. (2006). Mesopore-Modified Zeolites:  Preparation, Characterization, and Applications. Chemical Reviews, 106(3), 896-910. doi:10.1021/cr040204o

Pérez-Ramírez, J., Christensen, C. H., Egeblad, K., Christensen, C. H., & Groen, J. C. (2008). Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 37(11), 2530. doi:10.1039/b809030k

Ogura, M. (2008). Towards Realization of a Micro- and Mesoporous Composite Silicate Catalyst. Catalysis Surveys from Asia, 12(1), 16-27. doi:10.1007/s10563-007-9037-x

Corma, A. (1989). Application of Zeolites in Fluid Catalytic Cracking and Related Processes. Zeolites: Facts, Figures, Future Part A - Proceedings of the 8th International Zeolite Conference, 49-67. doi:10.1016/s0167-2991(08)61708-5

Groen, J. C., Moulijn, J. A., & Pérez-Ramírez, J. (2006). Desilication: on the controlled generation of mesoporosity in MFI zeolites. J. Mater. Chem., 16(22), 2121-2131. doi:10.1039/b517510k

Verboekend, D., & Pérez-Ramírez, J. (2011). Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 1(6), 879. doi:10.1039/c1cy00150g

Groen, J. ., Peffer, L. A. ., Moulijn, J. ., & Pérez-Ramı́rez, J. (2004). Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 241(1-3), 53-58. doi:10.1016/j.colsurfa.2004.04.012

Groen, J. C., Caicedo-Realpe, R., Abelló, S., & Pérez-Ramírez, J. (2009). Mesoporous metallosilicate zeolites by desilication: On the generic pore-inducing role of framework trivalent heteroatoms. Materials Letters, 63(12), 1037-1040. doi:10.1016/j.matlet.2009.02.001

Tao, Y., Kanoh, H., & Kaneko, K. (2006). Developments and structures of mesopores in alkaline-treated ZSM-5 zeolites. Adsorption, 12(5-6), 309-316. doi:10.1007/s10450-006-0561-1

Otten, M. M., Clayton, M. J., & Lamb, H. H. (1994). Platinum-Mordenite Catalysts for n-Hexane Isomerization: Characterization by X-Ray Absorption Spectroscopy and Chemical Probes. Journal of Catalysis, 149(1), 211-222. doi:10.1006/jcat.1994.1287

Carvill, B. T., Lerner, B. A., Adelman, B. J., Tomczak, D. C., & Sachtler, W. M. H. (1993). Increased Catalytic Activity Caused by Local Destruction of Linear Zeolite Channels: Effect of Reduction Temperature on Heptane Conversion over Platinum Supported in H-Mordenite. Journal of Catalysis, 144(1), 1-8. doi:10.1006/jcat.1993.1308

Holm, M. S., Taarning, E., Egeblad, K., & Christensen, C. H. (2011). Catalysis with hierarchical zeolites. Catalysis Today, 168(1), 3-16. doi:10.1016/j.cattod.2011.01.007

Park, D. H., Kim, S. S., Wang, H., Pinnavaia, T. J., Papapetrou, M. C., Lappas, A. A., & Triantafyllidis, K. S. (2009). Selective Petroleum Refining Over a Zeolite Catalyst with Small Intracrystal Mesopores. Angewandte Chemie International Edition, 48(41), 7645-7648. doi:10.1002/anie.200901551

Park, H. J., Park, K.-H., Jeon, J.-K., Kim, J., Ryoo, R., Jeong, K.-E., … Park, Y.-K. (2012). Production of phenolics and aromatics by pyrolysis of miscanthus. Fuel, 97, 379-384. doi:10.1016/j.fuel.2012.01.075

Foster, A. J., Jae, J., Cheng, Y.-T., Huber, G. W., & Lobo, R. F. (2012). Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Applied Catalysis A: General, 423-424, 154-161. doi:10.1016/j.apcata.2012.02.030

Neumann, G. T., & Hicks, J. C. (2012). Novel Hierarchical Cerium-Incorporated MFI Zeolite Catalysts for the Catalytic Fast Pyrolysis of Lignocellulosic Biomass. ACS Catalysis, 2(4), 642-646. doi:10.1021/cs200648q

Paixão, V., Carvalho, A. P., Rocha, J., Fernandes, A., & Martins, A. (2010). Modification of MOR by desilication treatments: Structural, textural and acidic characterization. Microporous and Mesoporous Materials, 131(1-3), 350-357. doi:10.1016/j.micromeso.2010.01.013

Da Costa-Serra, J. F., Navarro, M. T., Rey, F., & Chica, A. (2012). Bioethanol steam reforming on Ni-based modified mordenite. Effect of mesoporosity, acid sites and alkaline metals. International Journal of Hydrogen Energy, 37(8), 7101-7108. doi:10.1016/j.ijhydene.2011.10.086

Cortright, R. D., Davda, R. R., & Dumesic, J. A. (2002). Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 418(6901), 964-967. doi:10.1038/nature01009

Davda, R. R., Shabaker, J. W., Huber, G. W., Cortright, R. D., & Dumesic, J. A. (2005). A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis B: Environmental, 56(1-2), 171-186. doi:10.1016/j.apcatb.2004.04.027

Huber, G. W., & Dumesic, J. A. (2006). An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis Today, 111(1-2), 119-132. doi:10.1016/j.cattod.2005.10.010

Tang, Z., Monroe, J., Dong, J., Nenoff, T., & Weinkauf, D. (2009). Platinum-Loaded NaY Zeolite for Aqueous-Phase Reforming of Methanol and Ethanol to Hydrogen. Industrial & Engineering Chemistry Research, 48(5), 2728-2733. doi:10.1021/ie801222f

Lewis, N. S., & Nocera, D. G. (2006). Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, 103(43), 15729-15735. doi:10.1073/pnas.0603395103

Chen, X., Shen, S., Guo, L., & Mao, S. S. (2010). Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 110(11), 6503-6570. doi:10.1021/cr1001645

Kudo, A., & Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 38(1), 253-278. doi:10.1039/b800489g

FUJISHIMA, A., & HONDA, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38. doi:10.1038/238037a0

Kudo, A., Kato, H., & Tsuji, I. (2004). Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting. Chemistry Letters, 33(12), 1534-1539. doi:10.1246/cl.2004.1534

Domen, K., Naito, S., Onishi, T., & Tamaru, K. (1982). Photocatalytic decomposition of liquid water on a NiOSrTiO3 catalyst. Chemical Physics Letters, 92(4), 433-434. doi:10.1016/0009-2614(82)83443-x

Inoue, Y., Kubokawa, T., & Sato, K. (1990). Photocatalytic activity of sodium hexatitanate, Na2Ti6O13, with a tunnel structure for decomposition of water. Journal of the Chemical Society, Chemical Communications, (19), 1298. doi:10.1039/c39900001298

Takata, T., Furumi, Y., Shinohara, K., Tanaka, A., Hara, M., Kondo, J. N., & Domen, K. (1997). Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites. Chemistry of Materials, 9(5), 1063-1064. doi:10.1021/cm960612b

Kudo, A., Sayama, K., Tanaka, A., Asakura, K., Domen, K., Maruya, K., & Onishi, T. (1989). Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and O2: Structure and reaction mechanism. Journal of Catalysis, 120(2), 337-352. doi:10.1016/0021-9517(89)90274-1

Sayama, K., Tanaka, A., Domen, K., Maruya, K., & Onishi, T. (1991). Photocatalytic decomposition of water over platinum-intercalated potassium niobate (K4Nb6O17). The Journal of Physical Chemistry, 95(3), 1345-1348. doi:10.1021/j100156a058

Kudo, A., & Kato, H. (1997). Photocatalytic Decomposition of Water into H2and O2over Novel Photocatalyst K3Ta3Si2O13with Pillared Structure Consisting of Three TaO6Chains. Chemistry Letters, 26(9), 867-868. doi:10.1246/cl.1997.867

Ishihara, T., Nishiguchi, H., Fukamachi, K., & Takita, Y. (1999). Effects of Acceptor Doping to KTaO3on Photocatalytic Decomposition of Pure H2O. The Journal of Physical Chemistry B, 103(1), 1-3. doi:10.1021/jp983590k

Kudo, A., Kato, H., & Nakagawa, S. (2000). Water Splitting into H2and O2on New Sr2M2O7(M = Nb and Ta) Photocatalysts with Layered Perovskite Structures:  Factors Affecting the Photocatalytic Activity. The Journal of Physical Chemistry B, 104(3), 571-575. doi:10.1021/jp9919056

Kato, H., & Kudo, A. (2001). Water Splitting into H2and O2on Alkali Tantalate Photocatalysts ATaO3(A = Li, Na, and K). The Journal of Physical Chemistry B, 105(19), 4285-4292. doi:10.1021/jp004386b

Kato, H., Asakura, K., & Kudo, A. (2003). Highly Efficient Water Splitting into H2and O2over Lanthanum-Doped NaTaO3Photocatalysts with High Crystallinity and Surface Nanostructure. Journal of the American Chemical Society, 125(10), 3082-3089. doi:10.1021/ja027751g

Zou, Z., Ye, J., Sayama, K., & Arakawa, H. (2001). Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 414(6864), 625-627. doi:10.1038/414625a

Machida, M., Yabunaka, J., & Kijima, T. (2000). Synthesis and Photocatalytic Property of Layered Perovskite Tantalates, RbLnTa2O7(Ln = La, Pr, Nd, and Sm). Chemistry of Materials, 12(3), 812-817. doi:10.1021/cm990577j

Kato, H., & Kudo, A. (2002). Visible-Light-Response and Photocatalytic Activities of TiO2and SrTiO3Photocatalysts Codoped with Antimony and Chromium. The Journal of Physical Chemistry B, 106(19), 5029-5034. doi:10.1021/jp0255482

Ishii, T., Kato, H., & Kudo, A. (2004). H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 163(1-2), 181-186. doi:10.1016/s1010-6030(03)00442-8

Tsuji, I., Kato, H., Kobayashi, H., & Kudo, A. (2004). Photocatalytic H2Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures. Journal of the American Chemical Society, 126(41), 13406-13413. doi:10.1021/ja048296m

Tsuji, I., Kato, H., & Kudo, A. (2006). Photocatalytic Hydrogen Evolution on ZnS−CuInS2−AgInS2Solid Solution Photocatalysts with Wide Visible Light Absorption Bands. Chemistry of Materials, 18(7), 1969-1975. doi:10.1021/cm0527017

YAMASITA, D. (2004). Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ionics, 172(1-4), 591-595. doi:10.1016/j.ssi.2004.04.033

Niishiro, R., Kato, H., & Kudo, A. (2005). Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Physical Chemistry Chemical Physics, 7(10), 2241. doi:10.1039/b502147b

Tsuji, I., & Kudo, A. (2003). H2 evolution from aqueous sulfite solutions under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 156(1-3), 249-252. doi:10.1016/s1010-6030(02)00433-1

Diwald, O., Thompson, T. L., Goralski, E. G., Walck, S. D., & Yates, J. T. (2004). The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2Rutile Single Crystals. The Journal of Physical Chemistry B, 108(1), 52-57. doi:10.1021/jp030529t

Konta, R., Ishii, T., Kato, H., & Kudo, A. (2004). Photocatalytic Activities of Noble Metal Ion Doped SrTiO3under Visible Light Irradiation. The Journal of Physical Chemistry B, 108(26), 8992-8995. doi:10.1021/jp049556p

Tsuji, I., Kato, H., & Kudo, A. (2005). Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS-CuInS2-AgInS2 Solid-Solution Photocatalyst. Angewandte Chemie International Edition, 44(23), 3565-3568. doi:10.1002/anie.200500314

Thompson, T. L., & Yates, J. T. (2006). Surface Science Studies of the Photoactivation of TiO2New Photochemical Processes. Chemical Reviews, 106(10), 4428-4453. doi:10.1021/cr050172k

Gole, J. L., Stout, J. D., Burda, C., Lou, Y., & Chen, X. (2004). Highly Efficient Formation of Visible Light Tunable TiO2-xNxPhotocatalysts and Their Transformation at the Nanoscale. The Journal of Physical Chemistry B, 108(4), 1230-1240. doi:10.1021/jp030843n

Di Valentin, C., Pacchioni, G., & Selloni, A. (2004). Origin of the different photoactivity ofN-doped anatase and rutileTiO2. Physical Review B, 70(8). doi:10.1103/physrevb.70.085116

(s. f.). doi:10.1021/jp025961

Shangguan, W., & Yoshida, A. (2002). Photocatalytic Hydrogen Evolution from Water on Nanocomposites Incorporating Cadmium Sulfide into the Interlayer. The Journal of Physical Chemistry B, 106(47), 12227-12230. doi:10.1021/jp0212500

Koca, A. (2002). Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution. International Journal of Hydrogen Energy, 27(4), 363-367. doi:10.1016/s0360-3199(01)00133-1

Milczarek, G., Kasuya, A., Mamykin, S., Arai, T., Shinoda, K., & Tohji, K. (2003). Optimization of a two-compartment photoelectrochemical cell for solar hydrogen production. International Journal of Hydrogen Energy, 28(9), 919-926. doi:10.1016/s0360-3199(02)00171-4

Ni, M., Leung, M. K. H., Leung, D. Y. C., & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11(3), 401-425. doi:10.1016/j.rser.2005.01.009

Matsuoka, M., Kitano, M., Takeuchi, M., Tsujimaru, K., Anpo, M., & Thomas, J. M. (2007). Photocatalysis for new energy production. Catalysis Today, 122(1-2), 51-61. doi:10.1016/j.cattod.2007.01.042

Bak, T., Nowotny, J., Rekas, M., & Sorrell, C. . (2002). Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. International Journal of Hydrogen Energy, 27(10), 991-1022. doi:10.1016/s0360-3199(02)00022-8

Shaban, Y. A., & Khan, S. U. M. (2008). Visible light active carbon modified n-TiO2 for efficient hydrogen production by photoelectrochemical splitting of water. International Journal of Hydrogen Energy, 33(4), 1118-1126. doi:10.1016/j.ijhydene.2007.11.026

Lin, H.-Y., Lee, T.-H., & Sie, C.-Y. (2008). Photocatalytic hydrogen production with nickel oxide intercalated K4Nb6O17 under visible light irradiation. International Journal of Hydrogen Energy, 33(15), 4055-4063. doi:10.1016/j.ijhydene.2008.05.050

LIN, H., CHEN, Y., & CHEN, Y. (2007). Water splitting reaction on NiO/InVO4 under visible light irradiation. International Journal of Hydrogen Energy, 32(1), 86-92. doi:10.1016/j.ijhydene.2006.04.007

LUNAWAT, P., SENAPATI, S., KUMAR, R., & GUPTA, N. (2007). Visible light-induced splitting of water using CdS nanocrystallites immobilized over water-repellant polymeric surface. International Journal of Hydrogen Energy, 32(14), 2784-2790. doi:10.1016/j.ijhydene.2007.04.001

SATHISH, M., VISWANATHAN, B., & VISWANATH, R. (2006). Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting. International Journal of Hydrogen Energy, 31(7), 891-898. doi:10.1016/j.ijhydene.2005.08.002

KORICHE, N., BOUGUELIA, A., AIDER, A., & TRARI, M. (2005). Photocatalytic hydrogen evolution over delafossite. International Journal of Hydrogen Energy, 30(7), 693-699. doi:10.1016/j.ijhydene.2004.06.011

Ye, J. (2003). A novel series of water splitting photocatalysts NiM2O6 (M=Nb,Ta) active under visible light. International Journal of Hydrogen Energy, 28(6), 651-655. doi:10.1016/s0360-3199(02)00158-1

Bessekhouad, Y. (2002). Photocatalytic hydrogen production from suspension of spinel powders AMn2O4(A=Cu and Zn). International Journal of Hydrogen Energy, 27(4), 357-362. doi:10.1016/s0360-3199(01)00159-8

Dutta, P. K., & Turbeville, W. (1992). Intrazeolitic photoinduced redox reactions between tris(2,2’-bipyridine)ruthenium(2+) and methylviologen. The Journal of Physical Chemistry, 96(23), 9410-9416. doi:10.1021/j100202a064

Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y., & Honda, M. (1997). Photocatalytic Reduction of CO2with H2O on Titanium Oxides Anchored within Micropores of Zeolites:  Effects of the Structure of the Active Sites and the Addition of Pt. The Journal of Physical Chemistry B, 101(14), 2632-2636. doi:10.1021/jp962696h

Anpo, M., Shioya, Y., Yamashita, H., Giamello, E., Morterra, C., Che, M., … Ouellette, S. (1994). Preparation and Characterization of the Cu+/ZSM-5 Catalyst and Its Reaction with NO under UV Irradiation at 275 K. In situ Photoluminescence, EPR, and FT-IR Investigations. The Journal of Physical Chemistry, 98(22), 5744-5750. doi:10.1021/j100073a029

Yamashita, H., Ichihashi, Y., Anpo, M., Hashimoto, M., Louis, C., & Che, M. (1996). Photocatalytic Decomposition of NO at 275 K on Titanium Oxides Included within Y-Zeolite Cavities:  The Structure and Role of the Active Sites. The Journal of Physical Chemistry, 100(40), 16041-16044. doi:10.1021/jp9615969

Chen, H., Matsumoto, A., Nishimiya, N., & Tsutsumi, K. (1999). Preparation and characterization of TiO2 incorporated Y-zeolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 157(1-3), 295-305. doi:10.1016/s0927-7757(99)00052-7

Liu, X., Iu, K.-K., & Kerry Thomas, J. (1992). Encapsulation of TiO2 in zeolite Y. Chemical Physics Letters, 195(2-3), 163-168. doi:10.1016/0009-2614(92)86129-6

Liu, X., Iu, K.-K., & Thomas, J. K. (1993). Preparation, characterization and photoreactivity of titanium(IV) oxide encapsulated in zeolites. Journal of the Chemical Society, Faraday Transactions, 89(11), 1861. doi:10.1039/ft9938901861

Kim, Y., & Yoon, M. (2001). TiO2/Y-Zeolite encapsulating intramolecular charge transfer molecules: a new photocatalyst for photoreduction of methyl orange in aqueous medium. Journal of Molecular Catalysis A: Chemical, 168(1-2), 257-263. doi:10.1016/s1381-1169(00)00541-0

Chen, X., & Mao, S. S. (2007). Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 107(7), 2891-2959. doi:10.1021/cr0500535

Ikeda, S., Tanaka, A., Shinohara, K., Hara, M., Kondo, J. N., Maruya, K., & Domen, K. (1997). Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K4Nb6O17. Microporous Materials, 9(5-6), 253-258. doi:10.1016/s0927-6513(96)00112-5

Hidalgo, M. C., Aguilar, M., Maicu, M., Navío, J. A., & Colón, G. (2007). Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catalysis Today, 129(1-2), 50-58. doi:10.1016/j.cattod.2007.06.053

(s. f.). doi:10.1021/ja067050

Datta, A., Priyam, A., Bhattacharyya, S. N., Mukherjea, K. K., & Saha, A. (2008). Temperature tunability of size in CdS nanoparticles and size dependent photocatalytic degradation of nitroaromatics. Journal of Colloid and Interface Science, 322(1), 128-135. doi:10.1016/j.jcis.2008.02.052

Chae, S. Y., Park, M. K., Lee, S. K., Kim, T. Y., Kim, S. K., & Lee, W. I. (2003). Preparation of Size-Controlled TiO2Nanoparticles and Derivation of Optically Transparent Photocatalytic Films. Chemistry of Materials, 15(17), 3326-3331. doi:10.1021/cm030171d

Liu, G., Sun, C., Yang, H. G., Smith, S. C., Wang, L., Lu, G. Q. (Max), & Cheng, H.-M. (2010). Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem. Commun., 46(5), 755-757. doi:10.1039/b919895d

Lee, Y., Watanabe, T., Takata, T., Hara, M., Yoshimura, M., & Domen, K. (2007). Hydrothermal Synthesis of Fine NaTaO3Powder as a Highly Efficient Photocatalyst for Overall Water Splitting. Bulletin of the Chemical Society of Japan, 80(2), 423-428. doi:10.1246/bcsj.80.423

(s. f.). doi:10.1021/jp982948

Sun, W., Zhang, S., Liu, Z., Wang, C., & Mao, Z. (2008). Studies on the enhanced photocatalytic hydrogen evolution over Pt/PEG-modified TiO2 photocatalysts. International Journal of Hydrogen Energy, 33(4), 1112-1117. doi:10.1016/j.ijhydene.2007.12.059

Bahnemann, D. W., Kormann, C., & Hoffmann, M. R. (1987). Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study. The Journal of Physical Chemistry, 91(14), 3789-3798. doi:10.1021/j100298a015

Hoffman, A. J., Carraway, E. R., & Hoffmann, M. R. (1994). Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Colloids. Environmental Science & Technology, 28(5), 776-785. doi:10.1021/es00054a006

Hoffman, A. J., Mills, G., Yee, H., & Hoffmann, M. R. (1992). Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. The Journal of Physical Chemistry, 96(13), 5546-5552. doi:10.1021/j100192a067

Hoffman, A. J., Yee, H., Mills, G., & Hoffmann, M. R. (1992). Photoinitiated polymerization of methyl methacrylate using Q-sized zinc oxide colloids. The Journal of Physical Chemistry, 96(13), 5540-5546. doi:10.1021/j100192a066

Fox, M. A., & Pettit, T. L. (1989). Photoactivity of zeolite-supported cadmium sulfide: hydrogen evolution in the presence of sacrificial donors. Langmuir, 5(4), 1056-1061. doi:10.1021/la00088a032

Warrier, M., Lo, M. K. F., Monbouquette, H., & Garcia-Garibay, M. A. (2004). Photocatalytic reduction of aromatic azides to amines using CdS and CdSe nanoparticlesElectronic supplementary information (ESI) available: The preparation of CdS and CdSe nanoparticles, the synthesis of aromatic azides, procedures for the photocatalyzed reduction of aromatic azides, and procedures for the quantum yield measurements. See http://www.rsc.org/suppdata/pp/b4/b404268a/. Photochemical & Photobiological Sciences, 3(9), 859. doi:10.1039/b404268a

Ryu, S. Y., Balcerski, W., Lee, T. K., & Hoffmann, M. R. (2007). Photocatalytic Production of Hydrogen from Water with Visible Light Using Hybrid Catalysts of CdS Attached to Microporous and Mesoporous Silicas. The Journal of Physical Chemistry C, 111(49), 18195-18203. doi:10.1021/jp074860e

Ryu, S. Y., Choi, J., Balcerski, W., Lee, T. K., & Hoffmann, M. R. (2007). Photocatalytic Production of H2on Nanocomposite Catalysts. Industrial & Engineering Chemistry Research, 46(23), 7476-7488. doi:10.1021/ie0703033

YUE, P., & KHAN, F. (1991). Methods for increasing photo-assisted production of hydrogen over titanium exchanged zeolites. International Journal of Hydrogen Energy, 16(9), 609-613. doi:10.1016/0360-3199(91)90084-v

Guan, G., Kida, T., Kusakabe, K., Kimura, K., Fang, X., Ma, T., … Yoshida, A. (2004). Photocatalytic H2 evolution under visible light irradiation on CdS/ETS-4 composite. Chemical Physics Letters, 385(3-4), 319-322. doi:10.1016/j.cplett.2004.01.002

DUBEY, N., RAYALU, S., LABHSETWAR, N., & DEVOTTA, S. (2008). Visible light active zeolite-based photocatalysts for hydrogen evolution from water. International Journal of Hydrogen Energy, 33(21), 5958-5966. doi:10.1016/j.ijhydene.2008.05.095

White, J. C., & Dutta, P. K. (2011). Assembly of Nanoparticles in Zeolite Y for the Photocatalytic Generation of Hydrogen from Water. The Journal of Physical Chemistry C, 115(7), 2938-2947. doi:10.1021/jp108336a

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem