- -

High performance anodes with tailored catalytic properties for La5.6WO11.4-d; based proton conducting fuel cells

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

High performance anodes with tailored catalytic properties for La5.6WO11.4-d; based proton conducting fuel cells

Show full item record

Balaguer Ramirez, M.; Solis Díaz, C.; Bozza, F.; Bonanos, N.; Serra Alfaro, JM. (2013). High performance anodes with tailored catalytic properties for La5.6WO11.4-d; based proton conducting fuel cells. Journal of Materials Chemistry. 1(9):3004-3007. doi:10.1039/c3ta01554h

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68089

Files in this item

Item Metadata

Title: High performance anodes with tailored catalytic properties for La5.6WO11.4-d; based proton conducting fuel cells
Author: Balaguer Ramírez, María Solis Díaz, Cecilia Bozza, F. Bonanos, N. Serra Alfaro, José Manuel
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
This work shows the development of anodes based Sr-doped LaCrO3 (LSC) for La5.6WO11.4-d;-based proton conducting fuel cells. The electrode was improved by considering the operation limitations of the LSC material, which ...[+]
Subjects: Anode , Fuel cell , SOFC , Proton conductor , Tungstate
Copyrigths: Reserva de todos los derechos
Source:
Journal of Materials Chemistry. (issn: 0959-9428 )
DOI: 10.1039/c3ta01554h
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c3ta01554h
Type: Artículo

References

Iwahara, H. (1995). Technological challenges in the application of proton conducting ceramics. Solid State Ionics, 77, 289-298. doi:10.1016/0167-2738(95)00051-7

Fabbri, E., Bi, L., Pergolesi, D., & Traversa, E. (2011). High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes. Energy & Environmental Science, 4(12), 4984. doi:10.1039/c1ee02361f

HAUGSRUD, R. (2007). Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 178(7-10), 555-560. doi:10.1016/j.ssi.2007.01.004 [+]
Iwahara, H. (1995). Technological challenges in the application of proton conducting ceramics. Solid State Ionics, 77, 289-298. doi:10.1016/0167-2738(95)00051-7

Fabbri, E., Bi, L., Pergolesi, D., & Traversa, E. (2011). High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes. Energy & Environmental Science, 4(12), 4984. doi:10.1039/c1ee02361f

HAUGSRUD, R. (2007). Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 178(7-10), 555-560. doi:10.1016/j.ssi.2007.01.004

Haugsrud, R., & Kjølseth, C. (2008). Effects of protons and acceptor substitution on the electrical conductivity of La6WO12. Journal of Physics and Chemistry of Solids, 69(7), 1758-1765. doi:10.1016/j.jpcs.2008.01.002

Solís, C., Escolastico, S., Haugsrud, R., & Serra, J. M. (2011). La5.5WO12-δ Characterization of Transport Properties under Oxidizing Conditions: A Conductivity Relaxation Study. The Journal of Physical Chemistry C, 115(22), 11124-11131. doi:10.1021/jp2015066

Magrasó, A., Polfus, J. M., Frontera, C., Canales-Vázquez, J., Kalland, L.-E., Hervoches, C. H., … Haugsrud, R. (2012). Complete structural model for lanthanum tungstate: a chemically stable high temperature proton conductor by means of intrinsic defects. J. Mater. Chem., 22(5), 1762-1764. doi:10.1039/c2jm14981h

Solís, C., Navarrete, L., Roitsch, S., & Serra, J. M. (2012). Electrochemical properties of composite fuel cell cathodes for La5.5WO12−δ proton conducting electrolytes. Journal of Materials Chemistry, 22(31), 16051. doi:10.1039/c2jm32061d

Quarez, E., Kravchyk, K. V., & Joubert, O. (2012). Compatibility of proton conducting La6WO12 electrolyte with standard cathode materials. Solid State Ionics, 216, 19-24. doi:10.1016/j.ssi.2011.11.003

Meschke, F., Dias, F. J., & Tietz, F. (2001). Journal of Materials Science, 36(23), 5719-5728. doi:10.1023/a:1012594406053

Mohammed Hussain, A., Høgh, J. V. T., Jacobsen, T., & Bonanos, N. (2012). Nickel-ceria infiltrated Nb-doped SrTiO3 for low temperature SOFC anodes and analysis on gas diffusion impedance. International Journal of Hydrogen Energy, 37(5), 4309-4318. doi:10.1016/j.ijhydene.2011.11.087

Serra, J. M., & Meulenberg, W. A. (2007). Thin-Film Proton BaZr0.85Y0.15O3Conducting Electrolytes: Toward an Intermediate-Temperature Solid Oxide Fuel Cell Alternative. Journal of the American Ceramic Society, 90(7), 2082-2089. doi:10.1111/j.1551-2916.2007.01677.x

Ricote, S., & Bonanos, N. (2010). Enhanced sintering and conductivity study of cobalt or nickel doped solid solution of barium cerate and zirconate. Solid State Ionics, 181(15-16), 694-700. doi:10.1016/j.ssi.2010.04.007

Solís, C., Vert, V. B., Balaguer, M., Escolástico, S., Roitsch, S., & Serra, J. M. (2012). Mixed Proton-Electron Conducting Chromite Electrocatalysts as Anode Materials for LWO-Based Solid Oxide Fuel Cells. ChemSusChem, 5(11), 2155-2158. doi:10.1002/cssc.201200446

Sfeir, J. (2003). LaCrO3-based anodes: stability considerations. Journal of Power Sources, 118(1-2), 276-285. doi:10.1016/s0378-7753(03)00099-5

Caillot, T., Gauthier, G., Delichère, P., Cayron, C., & Cadete Santos Aires, F. J. (2012). Evidence of anti-coking behavior of La0.8Sr0.2Cr0.98Ru0.02O3 as potential anode material for Solid Oxide Fuel Cells directly fed under methane. Journal of Catalysis, 290, 158-164. doi:10.1016/j.jcat.2012.03.012

Sauvet, A. (2004). Catalytic activity for steam methane reforming and physical characterisation of La1−xSrxCr1−yNiyO3−δ. Solid State Ionics, 167(1-2), 1-8. doi:10.1016/j.ssi.2003.11.021

Zhu, W. Z., & Deevi, S. C. (2003). Development of interconnect materials for solid oxide fuel cells. Materials Science and Engineering: A, 348(1-2), 227-243. doi:10.1016/s0921-5093(02)00736-0

Solís, C., & Serra, J. M. (2011). Adjusting the conduction properties of La0.995Ca0.005NbO4−δ by doping for proton conducting fuel cells electrode operation. Solid State Ionics, 190(1), 38-45. doi:10.1016/j.ssi.2011.03.008

Dong, X., Ma, S., Huang, K., & Chen, F. (2012). La0.9−xCaxCe0.1CrO3−δ as potential anode materials for solid oxide fuel cells. International Journal of Hydrogen Energy, 37(14), 10866-10873. doi:10.1016/j.ijhydene.2012.04.112

Adler, S. B. (1996). Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes. Journal of The Electrochemical Society, 143(11), 3554. doi:10.1149/1.1837252

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record