- -

High performance anodes with tailored catalytic properties for La5.6WO11.4-d; based proton conducting fuel cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High performance anodes with tailored catalytic properties for La5.6WO11.4-d; based proton conducting fuel cells

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Balaguer Ramírez, María es_ES
dc.contributor.author Solis Díaz, Cecilia es_ES
dc.contributor.author Bozza, F. es_ES
dc.contributor.author Bonanos, N. es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2016-07-25T11:07:41Z
dc.date.available 2016-07-25T11:07:41Z
dc.date.issued 2013
dc.identifier.issn 0959-9428
dc.identifier.uri http://hdl.handle.net/10251/68089
dc.description.abstract This work shows the development of anodes based Sr-doped LaCrO3 (LSC) for La5.6WO11.4-d;-based proton conducting fuel cells. The electrode was improved by considering the operation limitations of the LSC material, which is chemically compatible at high temperatures with La5.6WO11.4-d; in contrast with typically NiO-based composite anodes. Firstly, the synthesis of 10% Ce doped LSC material, its compatibility with LWO and superior conduction properties are presented. These properties make this composition suitable as anode material, although EIS analysis revealed that its operation is still limited by LF surface associated limiting processes. In order to improve the surface catalytic properties of the anode, Ni infiltration was conducted on sintered anode, resulting in the coating of the electrode surface with Ni nanoparticles and consequently in a further improvement of the anode performance. Specifically, the infiltrated anode with the highest Ni loading presents uniquely HF associated resistance and the Rp is 0.26 ohm cm2 at 750 ºC in wet H2. es_ES
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Journal of Materials Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Anode es_ES
dc.subject Fuel cell es_ES
dc.subject SOFC es_ES
dc.subject Proton conductor es_ES
dc.subject Tungstate es_ES
dc.title High performance anodes with tailored catalytic properties for La5.6WO11.4-d; based proton conducting fuel cells es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3ta01554h
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Balaguer Ramirez, M.; Solis Díaz, C.; Bozza, F.; Bonanos, N.; Serra Alfaro, JM. (2013). High performance anodes with tailored catalytic properties for La5.6WO11.4-d; based proton conducting fuel cells. Journal of Materials Chemistry. 1(9):3004-3007. doi:10.1039/c3ta01554h es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3ta01554h es_ES
dc.description.upvformatpinicio 3004 es_ES
dc.description.upvformatpfin 3007 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 232746 es_ES
dc.description.references Iwahara, H. (1995). Technological challenges in the application of proton conducting ceramics. Solid State Ionics, 77, 289-298. doi:10.1016/0167-2738(95)00051-7 es_ES
dc.description.references Fabbri, E., Bi, L., Pergolesi, D., & Traversa, E. (2011). High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes. Energy & Environmental Science, 4(12), 4984. doi:10.1039/c1ee02361f es_ES
dc.description.references HAUGSRUD, R. (2007). Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 178(7-10), 555-560. doi:10.1016/j.ssi.2007.01.004 es_ES
dc.description.references Haugsrud, R., & Kjølseth, C. (2008). Effects of protons and acceptor substitution on the electrical conductivity of La6WO12. Journal of Physics and Chemistry of Solids, 69(7), 1758-1765. doi:10.1016/j.jpcs.2008.01.002 es_ES
dc.description.references Solís, C., Escolastico, S., Haugsrud, R., & Serra, J. M. (2011). La5.5WO12-δ Characterization of Transport Properties under Oxidizing Conditions: A Conductivity Relaxation Study. The Journal of Physical Chemistry C, 115(22), 11124-11131. doi:10.1021/jp2015066 es_ES
dc.description.references Magrasó, A., Polfus, J. M., Frontera, C., Canales-Vázquez, J., Kalland, L.-E., Hervoches, C. H., … Haugsrud, R. (2012). Complete structural model for lanthanum tungstate: a chemically stable high temperature proton conductor by means of intrinsic defects. J. Mater. Chem., 22(5), 1762-1764. doi:10.1039/c2jm14981h es_ES
dc.description.references Solís, C., Navarrete, L., Roitsch, S., & Serra, J. M. (2012). Electrochemical properties of composite fuel cell cathodes for La5.5WO12−δ proton conducting electrolytes. Journal of Materials Chemistry, 22(31), 16051. doi:10.1039/c2jm32061d es_ES
dc.description.references Quarez, E., Kravchyk, K. V., & Joubert, O. (2012). Compatibility of proton conducting La6WO12 electrolyte with standard cathode materials. Solid State Ionics, 216, 19-24. doi:10.1016/j.ssi.2011.11.003 es_ES
dc.description.references Meschke, F., Dias, F. J., & Tietz, F. (2001). Journal of Materials Science, 36(23), 5719-5728. doi:10.1023/a:1012594406053 es_ES
dc.description.references Mohammed Hussain, A., Høgh, J. V. T., Jacobsen, T., & Bonanos, N. (2012). Nickel-ceria infiltrated Nb-doped SrTiO3 for low temperature SOFC anodes and analysis on gas diffusion impedance. International Journal of Hydrogen Energy, 37(5), 4309-4318. doi:10.1016/j.ijhydene.2011.11.087 es_ES
dc.description.references Serra, J. M., & Meulenberg, W. A. (2007). Thin-Film Proton BaZr0.85Y0.15O3Conducting Electrolytes: Toward an Intermediate-Temperature Solid Oxide Fuel Cell Alternative. Journal of the American Ceramic Society, 90(7), 2082-2089. doi:10.1111/j.1551-2916.2007.01677.x es_ES
dc.description.references Ricote, S., & Bonanos, N. (2010). Enhanced sintering and conductivity study of cobalt or nickel doped solid solution of barium cerate and zirconate. Solid State Ionics, 181(15-16), 694-700. doi:10.1016/j.ssi.2010.04.007 es_ES
dc.description.references Solís, C., Vert, V. B., Balaguer, M., Escolástico, S., Roitsch, S., & Serra, J. M. (2012). Mixed Proton-Electron Conducting Chromite Electrocatalysts as Anode Materials for LWO-Based Solid Oxide Fuel Cells. ChemSusChem, 5(11), 2155-2158. doi:10.1002/cssc.201200446 es_ES
dc.description.references Sfeir, J. (2003). LaCrO3-based anodes: stability considerations. Journal of Power Sources, 118(1-2), 276-285. doi:10.1016/s0378-7753(03)00099-5 es_ES
dc.description.references Caillot, T., Gauthier, G., Delichère, P., Cayron, C., & Cadete Santos Aires, F. J. (2012). Evidence of anti-coking behavior of La0.8Sr0.2Cr0.98Ru0.02O3 as potential anode material for Solid Oxide Fuel Cells directly fed under methane. Journal of Catalysis, 290, 158-164. doi:10.1016/j.jcat.2012.03.012 es_ES
dc.description.references Sauvet, A. (2004). Catalytic activity for steam methane reforming and physical characterisation of La1−xSrxCr1−yNiyO3−δ. Solid State Ionics, 167(1-2), 1-8. doi:10.1016/j.ssi.2003.11.021 es_ES
dc.description.references Zhu, W. Z., & Deevi, S. C. (2003). Development of interconnect materials for solid oxide fuel cells. Materials Science and Engineering: A, 348(1-2), 227-243. doi:10.1016/s0921-5093(02)00736-0 es_ES
dc.description.references Solís, C., & Serra, J. M. (2011). Adjusting the conduction properties of La0.995Ca0.005NbO4−δ by doping for proton conducting fuel cells electrode operation. Solid State Ionics, 190(1), 38-45. doi:10.1016/j.ssi.2011.03.008 es_ES
dc.description.references Dong, X., Ma, S., Huang, K., & Chen, F. (2012). La0.9−xCaxCe0.1CrO3−δ as potential anode materials for solid oxide fuel cells. International Journal of Hydrogen Energy, 37(14), 10866-10873. doi:10.1016/j.ijhydene.2012.04.112 es_ES
dc.description.references Adler, S. B. (1996). Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes. Journal of The Electrochemical Society, 143(11), 3554. doi:10.1149/1.1837252 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem