Mostrar el registro sencillo del ítem
dc.contributor.author | Balaguer Ramírez, María | es_ES |
dc.contributor.author | Solis Díaz, Cecilia | es_ES |
dc.contributor.author | Bozza, F. | es_ES |
dc.contributor.author | Bonanos, N. | es_ES |
dc.contributor.author | Serra Alfaro, José Manuel | es_ES |
dc.date.accessioned | 2016-07-25T11:07:41Z | |
dc.date.available | 2016-07-25T11:07:41Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0959-9428 | |
dc.identifier.uri | http://hdl.handle.net/10251/68089 | |
dc.description.abstract | This work shows the development of anodes based Sr-doped LaCrO3 (LSC) for La5.6WO11.4-d;-based proton conducting fuel cells. The electrode was improved by considering the operation limitations of the LSC material, which is chemically compatible at high temperatures with La5.6WO11.4-d; in contrast with typically NiO-based composite anodes. Firstly, the synthesis of 10% Ce doped LSC material, its compatibility with LWO and superior conduction properties are presented. These properties make this composition suitable as anode material, although EIS analysis revealed that its operation is still limited by LF surface associated limiting processes. In order to improve the surface catalytic properties of the anode, Ni infiltration was conducted on sintered anode, resulting in the coating of the electrode surface with Ni nanoparticles and consequently in a further improvement of the anode performance. Specifically, the infiltrated anode with the highest Ni loading presents uniquely HF associated resistance and the Rp is 0.26 ohm cm2 at 750 ºC in wet H2. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Journal of Materials Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Anode | es_ES |
dc.subject | Fuel cell | es_ES |
dc.subject | SOFC | es_ES |
dc.subject | Proton conductor | es_ES |
dc.subject | Tungstate | es_ES |
dc.title | High performance anodes with tailored catalytic properties for La5.6WO11.4-d; based proton conducting fuel cells | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c3ta01554h | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Balaguer Ramirez, M.; Solis Díaz, C.; Bozza, F.; Bonanos, N.; Serra Alfaro, JM. (2013). High performance anodes with tailored catalytic properties for La5.6WO11.4-d; based proton conducting fuel cells. Journal of Materials Chemistry. 1(9):3004-3007. doi:10.1039/c3ta01554h | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c3ta01554h | es_ES |
dc.description.upvformatpinicio | 3004 | es_ES |
dc.description.upvformatpfin | 3007 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 1 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 232746 | es_ES |
dc.description.references | Iwahara, H. (1995). Technological challenges in the application of proton conducting ceramics. Solid State Ionics, 77, 289-298. doi:10.1016/0167-2738(95)00051-7 | es_ES |
dc.description.references | Fabbri, E., Bi, L., Pergolesi, D., & Traversa, E. (2011). High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes. Energy & Environmental Science, 4(12), 4984. doi:10.1039/c1ee02361f | es_ES |
dc.description.references | HAUGSRUD, R. (2007). Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 178(7-10), 555-560. doi:10.1016/j.ssi.2007.01.004 | es_ES |
dc.description.references | Haugsrud, R., & Kjølseth, C. (2008). Effects of protons and acceptor substitution on the electrical conductivity of La6WO12. Journal of Physics and Chemistry of Solids, 69(7), 1758-1765. doi:10.1016/j.jpcs.2008.01.002 | es_ES |
dc.description.references | Solís, C., Escolastico, S., Haugsrud, R., & Serra, J. M. (2011). La5.5WO12-δ Characterization of Transport Properties under Oxidizing Conditions: A Conductivity Relaxation Study. The Journal of Physical Chemistry C, 115(22), 11124-11131. doi:10.1021/jp2015066 | es_ES |
dc.description.references | Magrasó, A., Polfus, J. M., Frontera, C., Canales-Vázquez, J., Kalland, L.-E., Hervoches, C. H., … Haugsrud, R. (2012). Complete structural model for lanthanum tungstate: a chemically stable high temperature proton conductor by means of intrinsic defects. J. Mater. Chem., 22(5), 1762-1764. doi:10.1039/c2jm14981h | es_ES |
dc.description.references | Solís, C., Navarrete, L., Roitsch, S., & Serra, J. M. (2012). Electrochemical properties of composite fuel cell cathodes for La5.5WO12−δ proton conducting electrolytes. Journal of Materials Chemistry, 22(31), 16051. doi:10.1039/c2jm32061d | es_ES |
dc.description.references | Quarez, E., Kravchyk, K. V., & Joubert, O. (2012). Compatibility of proton conducting La6WO12 electrolyte with standard cathode materials. Solid State Ionics, 216, 19-24. doi:10.1016/j.ssi.2011.11.003 | es_ES |
dc.description.references | Meschke, F., Dias, F. J., & Tietz, F. (2001). Journal of Materials Science, 36(23), 5719-5728. doi:10.1023/a:1012594406053 | es_ES |
dc.description.references | Mohammed Hussain, A., Høgh, J. V. T., Jacobsen, T., & Bonanos, N. (2012). Nickel-ceria infiltrated Nb-doped SrTiO3 for low temperature SOFC anodes and analysis on gas diffusion impedance. International Journal of Hydrogen Energy, 37(5), 4309-4318. doi:10.1016/j.ijhydene.2011.11.087 | es_ES |
dc.description.references | Serra, J. M., & Meulenberg, W. A. (2007). Thin-Film Proton BaZr0.85Y0.15O3Conducting Electrolytes: Toward an Intermediate-Temperature Solid Oxide Fuel Cell Alternative. Journal of the American Ceramic Society, 90(7), 2082-2089. doi:10.1111/j.1551-2916.2007.01677.x | es_ES |
dc.description.references | Ricote, S., & Bonanos, N. (2010). Enhanced sintering and conductivity study of cobalt or nickel doped solid solution of barium cerate and zirconate. Solid State Ionics, 181(15-16), 694-700. doi:10.1016/j.ssi.2010.04.007 | es_ES |
dc.description.references | Solís, C., Vert, V. B., Balaguer, M., Escolástico, S., Roitsch, S., & Serra, J. M. (2012). Mixed Proton-Electron Conducting Chromite Electrocatalysts as Anode Materials for LWO-Based Solid Oxide Fuel Cells. ChemSusChem, 5(11), 2155-2158. doi:10.1002/cssc.201200446 | es_ES |
dc.description.references | Sfeir, J. (2003). LaCrO3-based anodes: stability considerations. Journal of Power Sources, 118(1-2), 276-285. doi:10.1016/s0378-7753(03)00099-5 | es_ES |
dc.description.references | Caillot, T., Gauthier, G., Delichère, P., Cayron, C., & Cadete Santos Aires, F. J. (2012). Evidence of anti-coking behavior of La0.8Sr0.2Cr0.98Ru0.02O3 as potential anode material for Solid Oxide Fuel Cells directly fed under methane. Journal of Catalysis, 290, 158-164. doi:10.1016/j.jcat.2012.03.012 | es_ES |
dc.description.references | Sauvet, A. (2004). Catalytic activity for steam methane reforming and physical characterisation of La1−xSrxCr1−yNiyO3−δ. Solid State Ionics, 167(1-2), 1-8. doi:10.1016/j.ssi.2003.11.021 | es_ES |
dc.description.references | Zhu, W. Z., & Deevi, S. C. (2003). Development of interconnect materials for solid oxide fuel cells. Materials Science and Engineering: A, 348(1-2), 227-243. doi:10.1016/s0921-5093(02)00736-0 | es_ES |
dc.description.references | Solís, C., & Serra, J. M. (2011). Adjusting the conduction properties of La0.995Ca0.005NbO4−δ by doping for proton conducting fuel cells electrode operation. Solid State Ionics, 190(1), 38-45. doi:10.1016/j.ssi.2011.03.008 | es_ES |
dc.description.references | Dong, X., Ma, S., Huang, K., & Chen, F. (2012). La0.9−xCaxCe0.1CrO3−δ as potential anode materials for solid oxide fuel cells. International Journal of Hydrogen Energy, 37(14), 10866-10873. doi:10.1016/j.ijhydene.2012.04.112 | es_ES |
dc.description.references | Adler, S. B. (1996). Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes. Journal of The Electrochemical Society, 143(11), 3554. doi:10.1149/1.1837252 | es_ES |