- -

Inhibition Of Arabidopsis O-Acetylserine(Thiol)Lyase A1 By Tyrosine-Nitration

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Inhibition Of Arabidopsis O-Acetylserine(Thiol)Lyase A1 By Tyrosine-Nitration

Show full item record

Alvarez, C.; Lozano Juste, J.; Romero, L.; Garcia, I.; Gotor, C.; Leon Ramos, J. (2011). Inhibition Of Arabidopsis O-Acetylserine(Thiol)Lyase A1 By Tyrosine-Nitration. Journal of Biological Chemistry. 286(1):578-586. doi:10.1074/jbc.M110.147678

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68098

Files in this item

Item Metadata

Title: Inhibition Of Arabidopsis O-Acetylserine(Thiol)Lyase A1 By Tyrosine-Nitration
Author: Alvarez, C Lozano Juste, Jorge Romero, L.C. Garcia, I Gotor, C. Leon Ramos, Jose
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
The last step of sulfur assimilation is catalyzed by O-acetyl-serine(thiol) lyase (OASTL) enzymes. OASTLs are encoded by a multigene family in the model plant Arabidopsis thaliana. Cytosolic OASA1 enzyme is the main source ...[+]
Copyrigths: Reserva de todos los derechos
Source:
Journal of Biological Chemistry. (issn: 0021-9258 )
DOI: 10.1074/jbc.M110.147678
Publisher:
American Society for Biochemistry and Molecular Biology
Publisher version: http://dx.doi.org/10.1074/jbc.M110.147678
Project ID:
info:eu-repo/grantAgreement/MEC//CSD2007-00057/ES/Función y potencial biotecnológico de los factores de transcripción de las plantas./ /
info:eu-repo/grantAgreement/MICINN//BIO2008-00839/ES/BIOSINTESIS Y FUNCION DEL OXIDO NITRICO EN ARABIDOPSIS. CONEXION CON LOS ACIDOS ABSCISICO, SALICILICO Y JASMONICO/
info:eu-repo/grantAgreement/MICINN//BIO2010-15201/ES/PAPEL FUNCIONAL DE CISTEINA Y S-SULFOCISTEINA EN LA SEÑALIZACION Y CONTROL DE LAS RESPUESTAS DE LAS PLANTAS/
Thanks:
This work was supported by Grants BIO2008-00839 and CONSOLIDER TRANSPLANTA CSD2007-00057 (to J. L.) and BIO2010- 15201 (to C. G.).
Type: Artículo

References

Wirtz, M. (2004). O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. Journal of Experimental Botany, 55(404), 1785-1798. doi:10.1093/jxb/erh201

Haas, F. H., Heeg, C., Queiroz, R., Bauer, A., Wirtz, M., & Hell, R. (2008). Mitochondrial Serine Acetyltransferase Functions as a Pacemaker of Cysteine Synthesis in Plant Cells. Plant Physiology, 148(2), 1055-1067. doi:10.1104/pp.108.125237

Heeg, C., Kruse, C., Jost, R., Gutensohn, M., Ruppert, T., Wirtz, M., & Hell, R. (2008). Analysis of the Arabidopsis O-Acetylserine(thiol)lyase Gene Family Demonstrates Compartment-Specific Differences in the Regulation of Cysteine Synthesis. The Plant Cell, 20(1), 168-185. doi:10.1105/tpc.107.056747 [+]
Wirtz, M. (2004). O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. Journal of Experimental Botany, 55(404), 1785-1798. doi:10.1093/jxb/erh201

Haas, F. H., Heeg, C., Queiroz, R., Bauer, A., Wirtz, M., & Hell, R. (2008). Mitochondrial Serine Acetyltransferase Functions as a Pacemaker of Cysteine Synthesis in Plant Cells. Plant Physiology, 148(2), 1055-1067. doi:10.1104/pp.108.125237

Heeg, C., Kruse, C., Jost, R., Gutensohn, M., Ruppert, T., Wirtz, M., & Hell, R. (2008). Analysis of the Arabidopsis O-Acetylserine(thiol)lyase Gene Family Demonstrates Compartment-Specific Differences in the Regulation of Cysteine Synthesis. The Plant Cell, 20(1), 168-185. doi:10.1105/tpc.107.056747

KRUEGER, S., NIEHL, A., LOPEZ MARTIN, M. C., STEINHAUSER, D., DONATH, A., HILDEBRANDT, T., … HESSE, H. (2009). Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis inArabidopsis. Plant, Cell & Environment, 32(4), 349-367. doi:10.1111/j.1365-3040.2009.01928.x

Watanabe, M., Kusano, M., Oikawa, A., Fukushima, A., Noji, M., & Saito, K. (2007). Physiological Roles of the β-Substituted Alanine Synthase Gene Family in Arabidopsis. Plant Physiology, 146(1), 310-320. doi:10.1104/pp.107.106831

Watanabe, M., Mochida, K., Kato, T., Tabata, S., Yoshimoto, N., Noji, M., & Saito, K. (2008). Comparative Genomics and Reverse Genetics Analysis Reveal Indispensable Functions of the Serine Acetyltransferase Gene Family in Arabidopsis. The Plant Cell, 20(9), 2484-2496. doi:10.1105/tpc.108.060335

Domı́nguez-Solı́s, J. R., Gutiérrez-Alcalá, G., Romero, L. C., & Gotor, C. (2000). The CytosolicO-Acetylserine(thiol)lyase Gene Is Regulated by Heavy Metals and Can Function in Cadmium Tolerance. Journal of Biological Chemistry, 276(12), 9297-9302. doi:10.1074/jbc.m009574200

Domínguez-Solís, J. R., López-Martín, M. C., Ager, F. J., Ynsa, M. D., Romero, L. C., & Gotor, C. (2004). Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnology Journal, 2(6), 469-476. doi:10.1111/j.1467-7652.2004.00092.x

López-Martín, M. C., Becana, M., Romero, L. C., & Gotor, C. (2008). Knocking Out Cytosolic Cysteine Synthesis Compromises the Antioxidant Capacity of the Cytosol to Maintain Discrete Concentrations of Hydrogen Peroxide in Arabidopsis. Plant Physiology, 147(2), 562-572. doi:10.1104/pp.108.117408

Yi, H., Galant, A., Ravilious, G. E., Preuss, M. L., & Jez, J. M. (2010). Sensing Sulfur Conditions: Simple to Complex Protein Regulatory Mechanisms in Plant Thiol Metabolism. Molecular Plant, 3(2), 269-279. doi:10.1093/mp/ssp112

Barroso, C., Romero, L. C., Cejudo, F. J., Vega, J. M., & Gotor, C. (1999). Plant Molecular Biology, 40(4), 729-736. doi:10.1023/a:1006285016296

Wirtz, M., & Hell, R. (2006). Functional analysis of the cysteine synthase protein complex from plants: Structural, biochemical and regulatory properties. Journal of Plant Physiology, 163(3), 273-286. doi:10.1016/j.jplph.2005.11.013

Droux, M. (2004). Sulfur Assimilation and the Role of Sulfur in Plant Metabolism: A Survey. Photosynthesis Research, 79(3), 331-348. doi:10.1023/b:pres.0000017196.95499.11

Leustek, T., Martin, M. N., Bick, J.-A., & Davies, J. P. (2000). PATHWAYS ANDREGULATION OFSULFURMETABOLISMREVEALEDTHROUGHMOLECULAR ANDGENETICSTUDIES. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 141-165. doi:10.1146/annurev.arplant.51.1.141

Lindermayr, C., & Durner, J. (2009). S-Nitrosylation in plants: Pattern and function. Journal of Proteomics, 73(1), 1-9. doi:10.1016/j.jprot.2009.07.002

Corpas, F. J., Chaki, M., Leterrier, M., & Barroso, J. B. (2009). Protein tyrosine nitration. Plant Signaling & Behavior, 4(10), 920-923. doi:10.4161/psb.4.10.9466

Szabó, C., Ischiropoulos, H., & Radi, R. (2007). Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Reviews Drug Discovery, 6(8), 662-680. doi:10.1038/nrd2222

Thomas, D. D., Espey, M. G., Vitek, M. P., Miranda, K. M., & Wink, D. A. (2002). Protein nitration is mediated by heme and free metals through Fenton-type chemistry: An alternative to the NO/OFormula reaction. Proceedings of the National Academy of Sciences, 99(20), 12691-12696. doi:10.1073/pnas.202312699

Ischiropoulos, H. (2003). Biological selectivity and functional aspects of protein tyrosine nitration. Biochemical and Biophysical Research Communications, 305(3), 776-783. doi:10.1016/s0006-291x(03)00814-3

Abello, N., Kerstjens, H. A. M., Postma, D. S., & Bischoff, R. (2009). Protein Tyrosine Nitration: Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins. Journal of Proteome Research, 8(7), 3222-3238. doi:10.1021/pr900039c

Bonner, E. R., Cahoon, R. E., Knapke, S. M., & Jez, J. M. (2005). Molecular Basis of Cysteine Biosynthesis in Plants. Journal of Biological Chemistry, 280(46), 38803-38813. doi:10.1074/jbc.m505313200

Atanassov, I. I., Atanassov, I. I., Etchells, J. P., & Turner, S. R. (2009). A simple, flexible and efficient PCR-fusion/Gateway cloning procedure for gene fusion, site-directed mutagenesis, short sequence insertion and domain deletions and swaps. Plant Methods, 5(1), 14. doi:10.1186/1746-4811-5-14

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3

Radi, R. (2004). Nitric oxide, oxidants, and protein tyrosine nitration. Proceedings of the National Academy of Sciences, 101(12), 4003-4008. doi:10.1073/pnas.0307446101

Zhang, Y., Lu, N., & Gao, Z. (2009). Hemin–H2O2–NO2− induced protein oxidation and tyrosine nitration are different from those of SIN-1: A study on glutamate dehydrogenase nitrative/oxidative modification. The International Journal of Biochemistry & Cell Biology, 41(4), 907-915. doi:10.1016/j.biocel.2008.08.040

Schroeder, P., Klotz, L.-O., Buchczyk, D. P., Sadik, C. D., Schewe, T., & Sies, H. (2001). Epicatechin Selectively Prevents Nitration but Not Oxidation Reactions of Peroxynitrite. Biochemical and Biophysical Research Communications, 285(3), 782-787. doi:10.1006/bbrc.2001.5210

Barroso, C., Vega, J., & Gotor, C. (1995). A new member of the cytosolic O -acetylserine(thiol)lyase gene family in Arabidopsis thaliana. FEBS Letters, 363(1-2), 1-5. doi:10.1016/0014-5793(95)00255-8

Gaitonde, M. (1967). A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochemical Journal, 104(2), 627-633. doi:10.1042/bj1040627

Tai, C.-H., & Cook, P. F. (2001). Pyridoxal 5‘-Phosphate-Dependent α,β-Elimination Reactions:  Mechanism ofO-Acetylserine Sulfhydrylase. Accounts of Chemical Research, 34(1), 49-59. doi:10.1021/ar990169l

Koprivova, A., North, K. A., & Kopriva, S. (2008). Complex Signaling Network in Regulation of Adenosine 5′-Phosphosulfate Reductase by Salt Stress in Arabidopsis Roots. Plant Physiology, 146(3), 1408-1420. doi:10.1104/pp.107.113175

Rinalducci, S., Murgiano, L., & Zolla, L. (2008). Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. Journal of Experimental Botany, 59(14), 3781-3801. doi:10.1093/jxb/ern252

Durzan, D. J., & Pedroso, M. C. (2002). Nitric Oxide and Reactive Nitrogen Oxide Species in Plants. Biotechnology and Genetic Engineering Reviews, 19(1), 293-338. doi:10.1080/02648725.2002.10648032

Souza, J. M., Daikhin, E., Yudkoff, M., Raman, C. S., & Ischiropoulos, H. (1999). Factors Determining the Selectivity of Protein Tyrosine Nitration. Archives of Biochemistry and Biophysics, 371(2), 169-178. doi:10.1006/abbi.1999.1480

De la Fuente van Bentem, S., & Hirt, H. (2009). Protein tyrosine phosphorylation in plants: more abundant than expected? Trends in Plant Science, 14(2), 71-76. doi:10.1016/j.tplants.2008.11.003

Ghelis, T., Bolbach, G., Clodic, G., Habricot, Y., Miginiac, E., Sotta, B., & Jeannette, E. (2008). Protein Tyrosine Kinases and Protein Tyrosine Phosphatases Are Involved in Abscisic Acid-Dependent Processes in Arabidopsis Seeds and Suspension Cells. Plant Physiology, 148(3), 1668-1680. doi:10.1104/pp.108.124594

Oh, M.-H., Wang, X., Kota, U., Goshe, M. B., Clouse, S. D., & Huber, S. C. (2009). Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proceedings of the National Academy of Sciences, 106(2), 658-663. doi:10.1073/pnas.0810249106

Kim, T.-W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J.-X., … Wang, Z.-Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biology, 11(10), 1254-1260. doi:10.1038/ncb1970

Francois, J. A., Kumaran, S., & Jez, J. M. (2006). Structural Basis for Interaction of O-Acetylserine Sulfhydrylase and Serine Acetyltransferase in the Arabidopsis Cysteine Synthase Complex. The Plant Cell, 18(12), 3647-3655. doi:10.1105/tpc.106.047316

Lozano-Juste, J., & León, J. (2009). Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis. Plant Physiology, 152(2), 891-903. doi:10.1104/pp.109.148023

Zhang, L. P., Mehta, S. K., Liu, Z. P., & Yang, Z. M. (2008). Copper-Induced Proline Synthesis is Associated with Nitric Oxide Generation in Chlamydomonas reinhardtii. Plant and Cell Physiology, 49(3), 411-419. doi:10.1093/pcp/pcn017

De Michele, R., Vurro, E., Rigo, C., Costa, A., Elviri, L., Di Valentin, M., … Lo Schiavo, F. (2009). Nitric Oxide Is Involved in Cadmium-Induced Programmed Cell Death in Arabidopsis Suspension Cultures. Plant Physiology, 150(1), 217-228. doi:10.1104/pp.108.133397

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record