- -

Inhibition Of Arabidopsis O-Acetylserine(Thiol)Lyase A1 By Tyrosine-Nitration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Inhibition Of Arabidopsis O-Acetylserine(Thiol)Lyase A1 By Tyrosine-Nitration

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alvarez, C es_ES
dc.contributor.author Lozano Juste, Jorge es_ES
dc.contributor.author Romero, L.C. es_ES
dc.contributor.author Garcia, I es_ES
dc.contributor.author Gotor, C. es_ES
dc.contributor.author Leon Ramos, Jose es_ES
dc.date.accessioned 2016-07-25T11:48:15Z
dc.date.available 2016-07-25T11:48:15Z
dc.date.issued 2011-06-07
dc.identifier.issn 0021-9258
dc.identifier.uri http://hdl.handle.net/10251/68098
dc.description.abstract The last step of sulfur assimilation is catalyzed by O-acetyl-serine(thiol) lyase (OASTL) enzymes. OASTLs are encoded by a multigene family in the model plant Arabidopsis thaliana. Cytosolic OASA1 enzyme is the main source of OASTL activity and thus crucial for cysteine homeostasis. We found that nitrating conditions after exposure to peroxynitrite strongly inhibited OASTL activity. Among OASTLs, OASA1 was markedly sensitive to nitration as demonstrated by the comparative analysis of OASTL activity in nitrated crude protein extracts from wild type and different oastl mutants. Furthermore, nitration assays on purified recombinant OASA1 protein led to 90% reduction of the activity due to inhibition of the enzyme, as no degradation of the protein occurred under these conditions. The reduced activity was due to nitration of the protein because selective scavenging of peroxynitrite with epicatechin impaired OASA1 nitration and the concomitant inhibition of OASTL activity. Inhibition of OASA1 activity upon nitration correlated with the identification of a modified OASA1 protein containing 3-nitroTyr(302) residue. The essential role of the Tyr(302) residue for the catalytic activity was further demonstrated by the loss of OASTL activity of a Y302A-mutated version of OASA1. Inhibition caused by Tyr(302) nitration on OASA1 activity seems to be due to a drastically reduced O-acetylserine substrate binding to the nitrated protein, and also to reduced stabilization of the pyridoxal-5'-phosphate cofactor through hydrogen bonds. This is the first report identifying a Tyr nitration site of a plant protein with functional effect and the first post-translational modification identified in OASA1 enzyme. es_ES
dc.description.sponsorship This work was supported by Grants BIO2008-00839 and CONSOLIDER TRANSPLANTA CSD2007-00057 (to J. L.) and BIO2010- 15201 (to C. G.). en_EN
dc.language Inglés es_ES
dc.publisher American Society for Biochemistry and Molecular Biology es_ES
dc.relation.ispartof Journal of Biological Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Inhibition Of Arabidopsis O-Acetylserine(Thiol)Lyase A1 By Tyrosine-Nitration es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1074/jbc.M110.147678
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00057/ES/Función y potencial biotecnológico de los factores de transcripción de las plantas./ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2008-00839/ES/BIOSINTESIS Y FUNCION DEL OXIDO NITRICO EN ARABIDOPSIS. CONEXION CON LOS ACIDOS ABSCISICO, SALICILICO Y JASMONICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2010-15201/ES/PAPEL FUNCIONAL DE CISTEINA Y S-SULFOCISTEINA EN LA SEÑALIZACION Y CONTROL DE LAS RESPUESTAS DE LAS PLANTAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Alvarez, C.; Lozano Juste, J.; Romero, L.; Garcia, I.; Gotor, C.; Leon Ramos, J. (2011). Inhibition Of Arabidopsis O-Acetylserine(Thiol)Lyase A1 By Tyrosine-Nitration. Journal of Biological Chemistry. 286(1):578-586. doi:10.1074/jbc.M110.147678 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1074/jbc.M110.147678 es_ES
dc.description.upvformatpinicio 578 es_ES
dc.description.upvformatpfin 586 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 286 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 213953 es_ES
dc.identifier.pmid 21047785 en_EN
dc.identifier.pmcid PMC3013017 en_EN
dc.description.references Wirtz, M. (2004). O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. Journal of Experimental Botany, 55(404), 1785-1798. doi:10.1093/jxb/erh201 es_ES
dc.description.references Haas, F. H., Heeg, C., Queiroz, R., Bauer, A., Wirtz, M., & Hell, R. (2008). Mitochondrial Serine Acetyltransferase Functions as a Pacemaker of Cysteine Synthesis in Plant Cells. Plant Physiology, 148(2), 1055-1067. doi:10.1104/pp.108.125237 es_ES
dc.description.references Heeg, C., Kruse, C., Jost, R., Gutensohn, M., Ruppert, T., Wirtz, M., & Hell, R. (2008). Analysis of the Arabidopsis O-Acetylserine(thiol)lyase Gene Family Demonstrates Compartment-Specific Differences in the Regulation of Cysteine Synthesis. The Plant Cell, 20(1), 168-185. doi:10.1105/tpc.107.056747 es_ES
dc.description.references KRUEGER, S., NIEHL, A., LOPEZ MARTIN, M. C., STEINHAUSER, D., DONATH, A., HILDEBRANDT, T., … HESSE, H. (2009). Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis inArabidopsis. Plant, Cell & Environment, 32(4), 349-367. doi:10.1111/j.1365-3040.2009.01928.x es_ES
dc.description.references Watanabe, M., Kusano, M., Oikawa, A., Fukushima, A., Noji, M., & Saito, K. (2007). Physiological Roles of the β-Substituted Alanine Synthase Gene Family in Arabidopsis. Plant Physiology, 146(1), 310-320. doi:10.1104/pp.107.106831 es_ES
dc.description.references Watanabe, M., Mochida, K., Kato, T., Tabata, S., Yoshimoto, N., Noji, M., & Saito, K. (2008). Comparative Genomics and Reverse Genetics Analysis Reveal Indispensable Functions of the Serine Acetyltransferase Gene Family in Arabidopsis. The Plant Cell, 20(9), 2484-2496. doi:10.1105/tpc.108.060335 es_ES
dc.description.references Domı́nguez-Solı́s, J. R., Gutiérrez-Alcalá, G., Romero, L. C., & Gotor, C. (2000). The CytosolicO-Acetylserine(thiol)lyase Gene Is Regulated by Heavy Metals and Can Function in Cadmium Tolerance. Journal of Biological Chemistry, 276(12), 9297-9302. doi:10.1074/jbc.m009574200 es_ES
dc.description.references Domínguez-Solís, J. R., López-Martín, M. C., Ager, F. J., Ynsa, M. D., Romero, L. C., & Gotor, C. (2004). Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnology Journal, 2(6), 469-476. doi:10.1111/j.1467-7652.2004.00092.x es_ES
dc.description.references López-Martín, M. C., Becana, M., Romero, L. C., & Gotor, C. (2008). Knocking Out Cytosolic Cysteine Synthesis Compromises the Antioxidant Capacity of the Cytosol to Maintain Discrete Concentrations of Hydrogen Peroxide in Arabidopsis. Plant Physiology, 147(2), 562-572. doi:10.1104/pp.108.117408 es_ES
dc.description.references Yi, H., Galant, A., Ravilious, G. E., Preuss, M. L., & Jez, J. M. (2010). Sensing Sulfur Conditions: Simple to Complex Protein Regulatory Mechanisms in Plant Thiol Metabolism. Molecular Plant, 3(2), 269-279. doi:10.1093/mp/ssp112 es_ES
dc.description.references Barroso, C., Romero, L. C., Cejudo, F. J., Vega, J. M., & Gotor, C. (1999). Plant Molecular Biology, 40(4), 729-736. doi:10.1023/a:1006285016296 es_ES
dc.description.references Wirtz, M., & Hell, R. (2006). Functional analysis of the cysteine synthase protein complex from plants: Structural, biochemical and regulatory properties. Journal of Plant Physiology, 163(3), 273-286. doi:10.1016/j.jplph.2005.11.013 es_ES
dc.description.references Droux, M. (2004). Sulfur Assimilation and the Role of Sulfur in Plant Metabolism: A Survey. Photosynthesis Research, 79(3), 331-348. doi:10.1023/b:pres.0000017196.95499.11 es_ES
dc.description.references Leustek, T., Martin, M. N., Bick, J.-A., & Davies, J. P. (2000). PATHWAYS ANDREGULATION OFSULFURMETABOLISMREVEALEDTHROUGHMOLECULAR ANDGENETICSTUDIES. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 141-165. doi:10.1146/annurev.arplant.51.1.141 es_ES
dc.description.references Lindermayr, C., & Durner, J. (2009). S-Nitrosylation in plants: Pattern and function. Journal of Proteomics, 73(1), 1-9. doi:10.1016/j.jprot.2009.07.002 es_ES
dc.description.references Corpas, F. J., Chaki, M., Leterrier, M., & Barroso, J. B. (2009). Protein tyrosine nitration. Plant Signaling & Behavior, 4(10), 920-923. doi:10.4161/psb.4.10.9466 es_ES
dc.description.references Szabó, C., Ischiropoulos, H., & Radi, R. (2007). Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Reviews Drug Discovery, 6(8), 662-680. doi:10.1038/nrd2222 es_ES
dc.description.references Thomas, D. D., Espey, M. G., Vitek, M. P., Miranda, K. M., & Wink, D. A. (2002). Protein nitration is mediated by heme and free metals through Fenton-type chemistry: An alternative to the NO/OFormula reaction. Proceedings of the National Academy of Sciences, 99(20), 12691-12696. doi:10.1073/pnas.202312699 es_ES
dc.description.references Ischiropoulos, H. (2003). Biological selectivity and functional aspects of protein tyrosine nitration. Biochemical and Biophysical Research Communications, 305(3), 776-783. doi:10.1016/s0006-291x(03)00814-3 es_ES
dc.description.references Abello, N., Kerstjens, H. A. M., Postma, D. S., & Bischoff, R. (2009). Protein Tyrosine Nitration: Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins. Journal of Proteome Research, 8(7), 3222-3238. doi:10.1021/pr900039c es_ES
dc.description.references Bonner, E. R., Cahoon, R. E., Knapke, S. M., & Jez, J. M. (2005). Molecular Basis of Cysteine Biosynthesis in Plants. Journal of Biological Chemistry, 280(46), 38803-38813. doi:10.1074/jbc.m505313200 es_ES
dc.description.references Atanassov, I. I., Atanassov, I. I., Etchells, J. P., & Turner, S. R. (2009). A simple, flexible and efficient PCR-fusion/Gateway cloning procedure for gene fusion, site-directed mutagenesis, short sequence insertion and domain deletions and swaps. Plant Methods, 5(1), 14. doi:10.1186/1746-4811-5-14 es_ES
dc.description.references Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3 es_ES
dc.description.references Radi, R. (2004). Nitric oxide, oxidants, and protein tyrosine nitration. Proceedings of the National Academy of Sciences, 101(12), 4003-4008. doi:10.1073/pnas.0307446101 es_ES
dc.description.references Zhang, Y., Lu, N., & Gao, Z. (2009). Hemin–H2O2–NO2− induced protein oxidation and tyrosine nitration are different from those of SIN-1: A study on glutamate dehydrogenase nitrative/oxidative modification. The International Journal of Biochemistry & Cell Biology, 41(4), 907-915. doi:10.1016/j.biocel.2008.08.040 es_ES
dc.description.references Schroeder, P., Klotz, L.-O., Buchczyk, D. P., Sadik, C. D., Schewe, T., & Sies, H. (2001). Epicatechin Selectively Prevents Nitration but Not Oxidation Reactions of Peroxynitrite. Biochemical and Biophysical Research Communications, 285(3), 782-787. doi:10.1006/bbrc.2001.5210 es_ES
dc.description.references Barroso, C., Vega, J., & Gotor, C. (1995). A new member of the cytosolic O -acetylserine(thiol)lyase gene family in Arabidopsis thaliana. FEBS Letters, 363(1-2), 1-5. doi:10.1016/0014-5793(95)00255-8 es_ES
dc.description.references Gaitonde, M. (1967). A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochemical Journal, 104(2), 627-633. doi:10.1042/bj1040627 es_ES
dc.description.references Tai, C.-H., & Cook, P. F. (2001). Pyridoxal 5‘-Phosphate-Dependent α,β-Elimination Reactions:  Mechanism ofO-Acetylserine Sulfhydrylase. Accounts of Chemical Research, 34(1), 49-59. doi:10.1021/ar990169l es_ES
dc.description.references Koprivova, A., North, K. A., & Kopriva, S. (2008). Complex Signaling Network in Regulation of Adenosine 5′-Phosphosulfate Reductase by Salt Stress in Arabidopsis Roots. Plant Physiology, 146(3), 1408-1420. doi:10.1104/pp.107.113175 es_ES
dc.description.references Rinalducci, S., Murgiano, L., & Zolla, L. (2008). Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. Journal of Experimental Botany, 59(14), 3781-3801. doi:10.1093/jxb/ern252 es_ES
dc.description.references Durzan, D. J., & Pedroso, M. C. (2002). Nitric Oxide and Reactive Nitrogen Oxide Species in Plants. Biotechnology and Genetic Engineering Reviews, 19(1), 293-338. doi:10.1080/02648725.2002.10648032 es_ES
dc.description.references Souza, J. M., Daikhin, E., Yudkoff, M., Raman, C. S., & Ischiropoulos, H. (1999). Factors Determining the Selectivity of Protein Tyrosine Nitration. Archives of Biochemistry and Biophysics, 371(2), 169-178. doi:10.1006/abbi.1999.1480 es_ES
dc.description.references De la Fuente van Bentem, S., & Hirt, H. (2009). Protein tyrosine phosphorylation in plants: more abundant than expected? Trends in Plant Science, 14(2), 71-76. doi:10.1016/j.tplants.2008.11.003 es_ES
dc.description.references Ghelis, T., Bolbach, G., Clodic, G., Habricot, Y., Miginiac, E., Sotta, B., & Jeannette, E. (2008). Protein Tyrosine Kinases and Protein Tyrosine Phosphatases Are Involved in Abscisic Acid-Dependent Processes in Arabidopsis Seeds and Suspension Cells. Plant Physiology, 148(3), 1668-1680. doi:10.1104/pp.108.124594 es_ES
dc.description.references Oh, M.-H., Wang, X., Kota, U., Goshe, M. B., Clouse, S. D., & Huber, S. C. (2009). Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proceedings of the National Academy of Sciences, 106(2), 658-663. doi:10.1073/pnas.0810249106 es_ES
dc.description.references Kim, T.-W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J.-X., … Wang, Z.-Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biology, 11(10), 1254-1260. doi:10.1038/ncb1970 es_ES
dc.description.references Francois, J. A., Kumaran, S., & Jez, J. M. (2006). Structural Basis for Interaction of O-Acetylserine Sulfhydrylase and Serine Acetyltransferase in the Arabidopsis Cysteine Synthase Complex. The Plant Cell, 18(12), 3647-3655. doi:10.1105/tpc.106.047316 es_ES
dc.description.references Lozano-Juste, J., & León, J. (2009). Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis. Plant Physiology, 152(2), 891-903. doi:10.1104/pp.109.148023 es_ES
dc.description.references Zhang, L. P., Mehta, S. K., Liu, Z. P., & Yang, Z. M. (2008). Copper-Induced Proline Synthesis is Associated with Nitric Oxide Generation in Chlamydomonas reinhardtii. Plant and Cell Physiology, 49(3), 411-419. doi:10.1093/pcp/pcn017 es_ES
dc.description.references De Michele, R., Vurro, E., Rigo, C., Costa, A., Elviri, L., Di Valentin, M., … Lo Schiavo, F. (2009). Nitric Oxide Is Involved in Cadmium-Induced Programmed Cell Death in Arabidopsis Suspension Cultures. Plant Physiology, 150(1), 217-228. doi:10.1104/pp.108.133397 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem