Mostrar el registro sencillo del ítem
dc.contributor.author | Alvarez, C | es_ES |
dc.contributor.author | Lozano Juste, Jorge | es_ES |
dc.contributor.author | Romero, L.C. | es_ES |
dc.contributor.author | Garcia, I | es_ES |
dc.contributor.author | Gotor, C. | es_ES |
dc.contributor.author | Leon Ramos, Jose | es_ES |
dc.date.accessioned | 2016-07-25T11:48:15Z | |
dc.date.available | 2016-07-25T11:48:15Z | |
dc.date.issued | 2011-06-07 | |
dc.identifier.issn | 0021-9258 | |
dc.identifier.uri | http://hdl.handle.net/10251/68098 | |
dc.description.abstract | The last step of sulfur assimilation is catalyzed by O-acetyl-serine(thiol) lyase (OASTL) enzymes. OASTLs are encoded by a multigene family in the model plant Arabidopsis thaliana. Cytosolic OASA1 enzyme is the main source of OASTL activity and thus crucial for cysteine homeostasis. We found that nitrating conditions after exposure to peroxynitrite strongly inhibited OASTL activity. Among OASTLs, OASA1 was markedly sensitive to nitration as demonstrated by the comparative analysis of OASTL activity in nitrated crude protein extracts from wild type and different oastl mutants. Furthermore, nitration assays on purified recombinant OASA1 protein led to 90% reduction of the activity due to inhibition of the enzyme, as no degradation of the protein occurred under these conditions. The reduced activity was due to nitration of the protein because selective scavenging of peroxynitrite with epicatechin impaired OASA1 nitration and the concomitant inhibition of OASTL activity. Inhibition of OASA1 activity upon nitration correlated with the identification of a modified OASA1 protein containing 3-nitroTyr(302) residue. The essential role of the Tyr(302) residue for the catalytic activity was further demonstrated by the loss of OASTL activity of a Y302A-mutated version of OASA1. Inhibition caused by Tyr(302) nitration on OASA1 activity seems to be due to a drastically reduced O-acetylserine substrate binding to the nitrated protein, and also to reduced stabilization of the pyridoxal-5'-phosphate cofactor through hydrogen bonds. This is the first report identifying a Tyr nitration site of a plant protein with functional effect and the first post-translational modification identified in OASA1 enzyme. | es_ES |
dc.description.sponsorship | This work was supported by Grants BIO2008-00839 and CONSOLIDER TRANSPLANTA CSD2007-00057 (to J. L.) and BIO2010- 15201 (to C. G.). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Society for Biochemistry and Molecular Biology | es_ES |
dc.relation.ispartof | Journal of Biological Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.title | Inhibition Of Arabidopsis O-Acetylserine(Thiol)Lyase A1 By Tyrosine-Nitration | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1074/jbc.M110.147678 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD2007-00057/ES/Función y potencial biotecnológico de los factores de transcripción de las plantas./ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIO2008-00839/ES/BIOSINTESIS Y FUNCION DEL OXIDO NITRICO EN ARABIDOPSIS. CONEXION CON LOS ACIDOS ABSCISICO, SALICILICO Y JASMONICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIO2010-15201/ES/PAPEL FUNCIONAL DE CISTEINA Y S-SULFOCISTEINA EN LA SEÑALIZACION Y CONTROL DE LAS RESPUESTAS DE LAS PLANTAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Alvarez, C.; Lozano Juste, J.; Romero, L.; Garcia, I.; Gotor, C.; Leon Ramos, J. (2011). Inhibition Of Arabidopsis O-Acetylserine(Thiol)Lyase A1 By Tyrosine-Nitration. Journal of Biological Chemistry. 286(1):578-586. doi:10.1074/jbc.M110.147678 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1074/jbc.M110.147678 | es_ES |
dc.description.upvformatpinicio | 578 | es_ES |
dc.description.upvformatpfin | 586 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 286 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 213953 | es_ES |
dc.identifier.pmid | 21047785 | en_EN |
dc.identifier.pmcid | PMC3013017 | en_EN |
dc.description.references | Wirtz, M. (2004). O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. Journal of Experimental Botany, 55(404), 1785-1798. doi:10.1093/jxb/erh201 | es_ES |
dc.description.references | Haas, F. H., Heeg, C., Queiroz, R., Bauer, A., Wirtz, M., & Hell, R. (2008). Mitochondrial Serine Acetyltransferase Functions as a Pacemaker of Cysteine Synthesis in Plant Cells. Plant Physiology, 148(2), 1055-1067. doi:10.1104/pp.108.125237 | es_ES |
dc.description.references | Heeg, C., Kruse, C., Jost, R., Gutensohn, M., Ruppert, T., Wirtz, M., & Hell, R. (2008). Analysis of the Arabidopsis O-Acetylserine(thiol)lyase Gene Family Demonstrates Compartment-Specific Differences in the Regulation of Cysteine Synthesis. The Plant Cell, 20(1), 168-185. doi:10.1105/tpc.107.056747 | es_ES |
dc.description.references | KRUEGER, S., NIEHL, A., LOPEZ MARTIN, M. C., STEINHAUSER, D., DONATH, A., HILDEBRANDT, T., … HESSE, H. (2009). Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis inArabidopsis. Plant, Cell & Environment, 32(4), 349-367. doi:10.1111/j.1365-3040.2009.01928.x | es_ES |
dc.description.references | Watanabe, M., Kusano, M., Oikawa, A., Fukushima, A., Noji, M., & Saito, K. (2007). Physiological Roles of the β-Substituted Alanine Synthase Gene Family in Arabidopsis. Plant Physiology, 146(1), 310-320. doi:10.1104/pp.107.106831 | es_ES |
dc.description.references | Watanabe, M., Mochida, K., Kato, T., Tabata, S., Yoshimoto, N., Noji, M., & Saito, K. (2008). Comparative Genomics and Reverse Genetics Analysis Reveal Indispensable Functions of the Serine Acetyltransferase Gene Family in Arabidopsis. The Plant Cell, 20(9), 2484-2496. doi:10.1105/tpc.108.060335 | es_ES |
dc.description.references | Domı́nguez-Solı́s, J. R., Gutiérrez-Alcalá, G., Romero, L. C., & Gotor, C. (2000). The CytosolicO-Acetylserine(thiol)lyase Gene Is Regulated by Heavy Metals and Can Function in Cadmium Tolerance. Journal of Biological Chemistry, 276(12), 9297-9302. doi:10.1074/jbc.m009574200 | es_ES |
dc.description.references | Domínguez-Solís, J. R., López-Martín, M. C., Ager, F. J., Ynsa, M. D., Romero, L. C., & Gotor, C. (2004). Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnology Journal, 2(6), 469-476. doi:10.1111/j.1467-7652.2004.00092.x | es_ES |
dc.description.references | López-Martín, M. C., Becana, M., Romero, L. C., & Gotor, C. (2008). Knocking Out Cytosolic Cysteine Synthesis Compromises the Antioxidant Capacity of the Cytosol to Maintain Discrete Concentrations of Hydrogen Peroxide in Arabidopsis. Plant Physiology, 147(2), 562-572. doi:10.1104/pp.108.117408 | es_ES |
dc.description.references | Yi, H., Galant, A., Ravilious, G. E., Preuss, M. L., & Jez, J. M. (2010). Sensing Sulfur Conditions: Simple to Complex Protein Regulatory Mechanisms in Plant Thiol Metabolism. Molecular Plant, 3(2), 269-279. doi:10.1093/mp/ssp112 | es_ES |
dc.description.references | Barroso, C., Romero, L. C., Cejudo, F. J., Vega, J. M., & Gotor, C. (1999). Plant Molecular Biology, 40(4), 729-736. doi:10.1023/a:1006285016296 | es_ES |
dc.description.references | Wirtz, M., & Hell, R. (2006). Functional analysis of the cysteine synthase protein complex from plants: Structural, biochemical and regulatory properties. Journal of Plant Physiology, 163(3), 273-286. doi:10.1016/j.jplph.2005.11.013 | es_ES |
dc.description.references | Droux, M. (2004). Sulfur Assimilation and the Role of Sulfur in Plant Metabolism: A Survey. Photosynthesis Research, 79(3), 331-348. doi:10.1023/b:pres.0000017196.95499.11 | es_ES |
dc.description.references | Leustek, T., Martin, M. N., Bick, J.-A., & Davies, J. P. (2000). PATHWAYS ANDREGULATION OFSULFURMETABOLISMREVEALEDTHROUGHMOLECULAR ANDGENETICSTUDIES. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 141-165. doi:10.1146/annurev.arplant.51.1.141 | es_ES |
dc.description.references | Lindermayr, C., & Durner, J. (2009). S-Nitrosylation in plants: Pattern and function. Journal of Proteomics, 73(1), 1-9. doi:10.1016/j.jprot.2009.07.002 | es_ES |
dc.description.references | Corpas, F. J., Chaki, M., Leterrier, M., & Barroso, J. B. (2009). Protein tyrosine nitration. Plant Signaling & Behavior, 4(10), 920-923. doi:10.4161/psb.4.10.9466 | es_ES |
dc.description.references | Szabó, C., Ischiropoulos, H., & Radi, R. (2007). Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Reviews Drug Discovery, 6(8), 662-680. doi:10.1038/nrd2222 | es_ES |
dc.description.references | Thomas, D. D., Espey, M. G., Vitek, M. P., Miranda, K. M., & Wink, D. A. (2002). Protein nitration is mediated by heme and free metals through Fenton-type chemistry: An alternative to the NO/OFormula reaction. Proceedings of the National Academy of Sciences, 99(20), 12691-12696. doi:10.1073/pnas.202312699 | es_ES |
dc.description.references | Ischiropoulos, H. (2003). Biological selectivity and functional aspects of protein tyrosine nitration. Biochemical and Biophysical Research Communications, 305(3), 776-783. doi:10.1016/s0006-291x(03)00814-3 | es_ES |
dc.description.references | Abello, N., Kerstjens, H. A. M., Postma, D. S., & Bischoff, R. (2009). Protein Tyrosine Nitration: Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins. Journal of Proteome Research, 8(7), 3222-3238. doi:10.1021/pr900039c | es_ES |
dc.description.references | Bonner, E. R., Cahoon, R. E., Knapke, S. M., & Jez, J. M. (2005). Molecular Basis of Cysteine Biosynthesis in Plants. Journal of Biological Chemistry, 280(46), 38803-38813. doi:10.1074/jbc.m505313200 | es_ES |
dc.description.references | Atanassov, I. I., Atanassov, I. I., Etchells, J. P., & Turner, S. R. (2009). A simple, flexible and efficient PCR-fusion/Gateway cloning procedure for gene fusion, site-directed mutagenesis, short sequence insertion and domain deletions and swaps. Plant Methods, 5(1), 14. doi:10.1186/1746-4811-5-14 | es_ES |
dc.description.references | Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3 | es_ES |
dc.description.references | Radi, R. (2004). Nitric oxide, oxidants, and protein tyrosine nitration. Proceedings of the National Academy of Sciences, 101(12), 4003-4008. doi:10.1073/pnas.0307446101 | es_ES |
dc.description.references | Zhang, Y., Lu, N., & Gao, Z. (2009). Hemin–H2O2–NO2− induced protein oxidation and tyrosine nitration are different from those of SIN-1: A study on glutamate dehydrogenase nitrative/oxidative modification. The International Journal of Biochemistry & Cell Biology, 41(4), 907-915. doi:10.1016/j.biocel.2008.08.040 | es_ES |
dc.description.references | Schroeder, P., Klotz, L.-O., Buchczyk, D. P., Sadik, C. D., Schewe, T., & Sies, H. (2001). Epicatechin Selectively Prevents Nitration but Not Oxidation Reactions of Peroxynitrite. Biochemical and Biophysical Research Communications, 285(3), 782-787. doi:10.1006/bbrc.2001.5210 | es_ES |
dc.description.references | Barroso, C., Vega, J., & Gotor, C. (1995). A new member of the cytosolic O -acetylserine(thiol)lyase gene family in Arabidopsis thaliana. FEBS Letters, 363(1-2), 1-5. doi:10.1016/0014-5793(95)00255-8 | es_ES |
dc.description.references | Gaitonde, M. (1967). A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochemical Journal, 104(2), 627-633. doi:10.1042/bj1040627 | es_ES |
dc.description.references | Tai, C.-H., & Cook, P. F. (2001). Pyridoxal 5‘-Phosphate-Dependent α,β-Elimination Reactions: Mechanism ofO-Acetylserine Sulfhydrylase. Accounts of Chemical Research, 34(1), 49-59. doi:10.1021/ar990169l | es_ES |
dc.description.references | Koprivova, A., North, K. A., & Kopriva, S. (2008). Complex Signaling Network in Regulation of Adenosine 5′-Phosphosulfate Reductase by Salt Stress in Arabidopsis Roots. Plant Physiology, 146(3), 1408-1420. doi:10.1104/pp.107.113175 | es_ES |
dc.description.references | Rinalducci, S., Murgiano, L., & Zolla, L. (2008). Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. Journal of Experimental Botany, 59(14), 3781-3801. doi:10.1093/jxb/ern252 | es_ES |
dc.description.references | Durzan, D. J., & Pedroso, M. C. (2002). Nitric Oxide and Reactive Nitrogen Oxide Species in Plants. Biotechnology and Genetic Engineering Reviews, 19(1), 293-338. doi:10.1080/02648725.2002.10648032 | es_ES |
dc.description.references | Souza, J. M., Daikhin, E., Yudkoff, M., Raman, C. S., & Ischiropoulos, H. (1999). Factors Determining the Selectivity of Protein Tyrosine Nitration. Archives of Biochemistry and Biophysics, 371(2), 169-178. doi:10.1006/abbi.1999.1480 | es_ES |
dc.description.references | De la Fuente van Bentem, S., & Hirt, H. (2009). Protein tyrosine phosphorylation in plants: more abundant than expected? Trends in Plant Science, 14(2), 71-76. doi:10.1016/j.tplants.2008.11.003 | es_ES |
dc.description.references | Ghelis, T., Bolbach, G., Clodic, G., Habricot, Y., Miginiac, E., Sotta, B., & Jeannette, E. (2008). Protein Tyrosine Kinases and Protein Tyrosine Phosphatases Are Involved in Abscisic Acid-Dependent Processes in Arabidopsis Seeds and Suspension Cells. Plant Physiology, 148(3), 1668-1680. doi:10.1104/pp.108.124594 | es_ES |
dc.description.references | Oh, M.-H., Wang, X., Kota, U., Goshe, M. B., Clouse, S. D., & Huber, S. C. (2009). Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proceedings of the National Academy of Sciences, 106(2), 658-663. doi:10.1073/pnas.0810249106 | es_ES |
dc.description.references | Kim, T.-W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J.-X., … Wang, Z.-Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biology, 11(10), 1254-1260. doi:10.1038/ncb1970 | es_ES |
dc.description.references | Francois, J. A., Kumaran, S., & Jez, J. M. (2006). Structural Basis for Interaction of O-Acetylserine Sulfhydrylase and Serine Acetyltransferase in the Arabidopsis Cysteine Synthase Complex. The Plant Cell, 18(12), 3647-3655. doi:10.1105/tpc.106.047316 | es_ES |
dc.description.references | Lozano-Juste, J., & León, J. (2009). Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis. Plant Physiology, 152(2), 891-903. doi:10.1104/pp.109.148023 | es_ES |
dc.description.references | Zhang, L. P., Mehta, S. K., Liu, Z. P., & Yang, Z. M. (2008). Copper-Induced Proline Synthesis is Associated with Nitric Oxide Generation in Chlamydomonas reinhardtii. Plant and Cell Physiology, 49(3), 411-419. doi:10.1093/pcp/pcn017 | es_ES |
dc.description.references | De Michele, R., Vurro, E., Rigo, C., Costa, A., Elviri, L., Di Valentin, M., … Lo Schiavo, F. (2009). Nitric Oxide Is Involved in Cadmium-Induced Programmed Cell Death in Arabidopsis Suspension Cultures. Plant Physiology, 150(1), 217-228. doi:10.1104/pp.108.133397 | es_ES |