- -

Histology of Quercus ilex fine roots during infection by Phytophthora cinnamomi

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Histology of Quercus ilex fine roots during infection by Phytophthora cinnamomi

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Redondo, Miguel Ángel es_ES
dc.contributor.author Pérez Sierra, Ana María es_ES
dc.contributor.author Abad Campos, Paloma es_ES
dc.contributor.author Torres, Lilian es_ES
dc.contributor.author Solla, Alejandro es_ES
dc.contributor.author Reig Armiñana, José es_ES
dc.contributor.author García-Breijo, Francisco-José es_ES
dc.date.accessioned 2016-07-26T06:53:21Z
dc.date.available 2016-07-26T06:53:21Z
dc.date.issued 2015-12
dc.identifier.issn 0931-1890
dc.identifier.uri http://hdl.handle.net/10251/68170
dc.description.abstract [EN] This study aimed to elucidate the infection process of the invasive pathogen Phytophthora cinnamomi on primary and secondary roots of 2-month-old Quercus ilex seedlings. To test if different methods of inoculation lead to different changes in the host caused by the pathogen, the root system of plants was either immersed into a suspension of P. cinnamomi zoospores, or placed in direct contact with agar plugs colonized by P. cinnamomi mycelium. Histology of root sections obtained every 24 h for 10 days revealed similar changes in the structure of cells and tissues of the host irrespective of the inoculation method used. However, the immersion method resulted in a delay in the colonization of the host, different aerial symptoms, and the formation of different reproductive structures of the pathogen. Emerging secondary and tertiary roots and sites where secondary or tertiary roots were about to emerge were identified as main entry points. Hyphae in the xylem tissues were more frequently found in secondary than in primary roots, but in both types of roots the phloem was the most important pathway of colonization. For the first time in the interaction between Q. ilex and P. cinnamomi, transmission electron microscopy was used to describe degradation of the host cell walls, pit penetration and extrahaustorial matrix. Haustoria development during intracellular growth and hyphal aggregations (stromata) caused no damage to the host cell walls indicating hemibiotrophic parasitism es_ES
dc.description.sponsorship This research was financially supported by the Project AGL2011-30438, by the Vicerrectorado de Investigacion from the Polytechnic University of Valencia, and by the "Julio Iranzo'' laboratory from the Botanic Garden of Valencia. The authors deeply appreciate the help of the staff from both institutions, particularly the valuable contribution of Nuria Cebrian Gomez. Additionally, the staff from the microscopy sections from Polytechnic University of Valencia and University of Valencia have provided us with valuable help. We are grateful to the two anonymous reviewers for the valuable comments in an earlier version of this manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation "Julio Iranzo'' laboratory from the Botanic Garden of Valencia es_ES
dc.relation.ispartof Trees - Structure and Function es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cell structure es_ES
dc.subject Histological alterations es_ES
dc.subject Histopathology es_ES
dc.subject Microscopy es_ES
dc.subject Pathogenesis es_ES
dc.subject Invasive pathogen es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.subject.classification BIOLOGIA VEGETAL es_ES
dc.title Histology of Quercus ilex fine roots during infection by Phytophthora cinnamomi es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00468-015-1275-3
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2011-30438-C02-02/ES/REGENERACION DE QUERCUS ILEX ANTE NUEVAS ESPECIES DE PHYTOPHTHORA DETECTADAS EN EL AMBITO FORESTAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2011-30438-C02-01/ES/APLICACION DE TECNICAS MOLECULARES PARA VALORAR LA IMPLICACION DE PHYTOPHTHORA SPP. EN EL DECAIMIENTO DE QUERCUS ILEX/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Redondo, MÁ.; Pérez Sierra, AM.; Abad Campos, P.; Torres, L.; Solla, A.; Reig Armiñana, J.; García-Breijo, F. (2015). Histology of Quercus ilex fine roots during infection by Phytophthora cinnamomi. Trees - Structure and Function. 29(6):1943-1957. https://doi.org/10.1007/s00468-015-1275-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s00468-015-1275-3 es_ES
dc.description.upvformatpinicio 1943 es_ES
dc.description.upvformatpfin 1957 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 292853 es_ES
dc.identifier.eissn 1432-2285
dc.contributor.funder Jardín Botánico de la Universidad de Valencia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Blaschke H (1994) Decline symptoms on roots of Quercus robur. Eur J For Pathol 24:386–398. doi: 10.1111/j.1439-0329.1994.tb00832.x es_ES
dc.description.references Brummer M, Arend M, Fromm J et al (2002) Ultrastructural changes and immunocytochemical localization of the elicitin quercinin in Quercus robur L. roots infected with Phytophthora quercina. Physiol Mol Plant Pathol 61:109–120. doi: 10.1006/pmpp.2002.0419 es_ES
dc.description.references Cahill DM, Weste GM, Grant BR (1986) Changes in cytokinin concentrations in xylem extrudate following Infection of Eucalyptus marginata Donn ex Sm with Phytophthora cinnamomi Rands. Plant Physiol 81:1103–1109 es_ES
dc.description.references Cahill D, Legge B, Weste GM (1989) Cellular and histological changes induced by Phytophthora cinnamomi in a group of plant species ranging from fully susceptible to fully resistant. Phytopathology 79:417–424. doi: 10.1094/Phyto-79-417 es_ES
dc.description.references Casano LM, del Campo EM, García-Breijo FJ et al (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13:806–818. doi: 10.1111/j.1462-2920.2010.02386.x es_ES
dc.description.references Corcobado T, Cubera E, Pérez-Sierra A et al (2010) First report of Phytophthora gonapodyides involved in the decline of Quercus ilex in xeric conditions in Spain. New Dis Rep 22:33 es_ES
dc.description.references Corcobado T, Cubera E, Moreno G, Solla A (2013) Quercus ilex forests are influenced by annual variations in water table, soil water deficit and fine root loss caused by Phytophthora cinnamomi. Agric For Meteorol 169:92–99. doi: 10.1016/j.agrformet.2012.09.017 es_ES
dc.description.references Corcobado T, Cubera E, Juárez E et al (2014) Drought events determine performance of Quercus ilex seedlings and increase their susceptibility to Phytophthora cinnamomi. Agric For Meteorol 192–193:1–8. doi: 10.1016/j.agrformet.2014.02.007 es_ES
dc.description.references Crone M, McComb JA, O’Brien PA, Hardy GESJ (2013a) Survival of Phytophthora cinnamomi as oospores, stromata, and thick-walled chlamydospores in roots of symptomatic and asymptomatic annual and herbaceous perennial plant species. Fungal Biol 117:112–123. doi: 10.1016/j.funbio.2012.12.004 es_ES
dc.description.references Crone M, McComb JA, O’Brien PA, Hardy GESJ (2013b) Assessment of Australian native annual/herbaceous perennial plant species as asymptomatic or symptomatic hosts of Phytophthora cinnamomi under controlled conditions. For Pathol 43:245–251. doi: 10.1111/efp.12027 es_ES
dc.description.references Cubera E, Moreno G, Solla A, Madeira M (2012) Root system of Quercus suber L. seedlings in response to herbaceous competition and different watering and fertilisation regimes. Agrofor Syst 85:205–214. doi: 10.1007/s10457-012-9492-x es_ES
dc.description.references Dalio RJD, Fleischmann F, Humez M, Osswald W (2014) Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition. PLoS One 9:e87860. doi: 10.1371/journal.pone.0087860 es_ES
dc.description.references de Camilo-Alves C, de Sampaio P, da Clara MIE, de Almeida Ribeiro NMC (2013) Decline of mediterranean oak trees and its association with Phytophthora cinnamomi: a review. Eur J For Res 132:411–432. doi: 10.1007/s10342-013-0688-z es_ES
dc.description.references Fahn A (1990) Plant anatomy. Pergamon Press, Oxford es_ES
dc.description.references Hansen EM, Parke JL, Sutton W (2005) Susceptibility of Oregon forest trees and shrubs to Phytophthora ramorum: a comparison of artificial inoculation and natural infection. Plant Dis 89:63–70. doi: 10.1094/PD-89-0063 es_ES
dc.description.references Haque MMU, Diez JJ (2012) Susceptibility of common alder (Alnus glutinosa) seeds and seedlings to Phytophthora alni and other Phytophthora species. For Syst 21:313–322. doi: 10.5424/fs/2012212-02267 es_ES
dc.description.references Hardham AR (2001) The cell biology behind Phytophthora pathogenicity. Australas Plant Pathol 30:91–98. doi: 10.1071/AP01006 es_ES
dc.description.references Hardham AR (2005) Phytophthora cinnamomi. Mol Plant Pathol 6:589–604. doi: 10.1111/j.1364-3703.2005.00308.x es_ES
dc.description.references Hatakka A (2005) Biodegradation of lignin. Biopolym Online. doi: 10.1002/3527600035.bpol1005 es_ES
dc.description.references Horta M, Caetano P, Medeira C et al (2010) Involvement of the β-cinnamomin elicitin in infection and colonisation of cork oak roots by Phytophthora cinnamomi. Eur J Plant Pathol 127:427–436. doi: 10.1007/s10658-010-9609-x es_ES
dc.description.references Judelson HS, Blanco FA (2005) The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol 3:47–58. doi: 10.1038/nrmicro1064 es_ES
dc.description.references Jung T, Cooke DEL, Blaschke H et al (1999) Phytophthora quercina sp. nov., causing root rot of European oaks. Mycol Res 103:785–798. doi: 10.1017/S0953756298007734 es_ES
dc.description.references Jung T, Colquhoun IJ, Hardy GESJ (2013) New insights into the survival strategy of the invasive soilborne pathogen Phytophthora cinnamomi in different natural ecosystems in Western Australia. For Pathol 43:266–288. doi: 10.1111/efp.12025 es_ES
dc.description.references Kamoun S, Furzer O, Jones JDG et al (2015) The top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol 16:413–434. doi: 10.1111/mpp.12190 es_ES
dc.description.references Laliberté E, Lambers H, Burgess TI, Wright SJ (2015) Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. N Phytol 206:507–521. doi: 10.1111/nph.13203 es_ES
dc.description.references Linaldeddu BT, Scanu B, Maddau L, Franceschini A (2014) Diplodia corticola and Phytophthora cinnamomi: the main pathogens involved in holm oak decline on Caprera Island (Italy). For Pathol 44:191–200. doi: 10.1111/efp.12081 es_ES
dc.description.references Lu Y-J, Schornack S, Spallek T et al (2012) Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking. Cell Microbiol 14:682–697. doi: 10.1111/j.1462-5822.2012.01751.x es_ES
dc.description.references Martín-García J, Solla A, Corcobado T et al (2015) Influence of temperature on germination of Quercus ilex in Phytophthora cinnamomi, P. gonapodyides, P. quercina and P. psychrophila infested soils. For Pathol 45:215–223. doi: 10.1111/efp.12159 es_ES
dc.description.references Maurel M, Robin C, Capron G, Desprez-Loustau M-L (2001) Effects of root damage associated with Phytophthora cinnamomi on water relations, biomass accumulation, mineral nutrition and vulnerability to water deficit of five oak and chestnut species. For Pathol 31:353–369. doi: 10.1046/j.1439-0329.2001.00258.x es_ES
dc.description.references McConnell ME, Balci Y (2015) Fine root dynamics of oak saplings in response to Phytophthora cinnamomi infection under different temperatures and durations. For Pathol 45:155–164. doi: 10.1111/efp.12150 es_ES
dc.description.references Mullendore DL, Windt CW, As HV, Knoblauch M (2010) Sieve tube geometry in relation to phloem flow. Plant Cell Online 22:579–593. doi: 10.1105/tpc.109.070094 es_ES
dc.description.references O’Gara E, Howard K, McComb J et al (2015) Penetration of suberized periderm of a woody host by Phytophthora cinnamomi. Plant Pathol 64:207–215. doi: 10.1111/ppa.12244 es_ES
dc.description.references Oh E, Hansen EM (2007) Histopathology of infection and colonization of susceptible and resistant Port-Orford-Cedar by Phytophthora lateralis. Phytopathology 97:684–693. doi: 10.1094/PHYTO-97-6-0684 es_ES
dc.description.references Oßwald W, Fleischmann F, Rigling D et al (2014) Strategies of attack and defence in woody plant–Phytophthora interactions. For Pathol 44:169–190. doi: 10.1111/efp.12096 es_ES
dc.description.references Pérez-Sierra A, López-García C, León M et al (2013) Previously unrecorded low-temperature Phytophthora species associated with Quercus decline in a Mediterranean forest in eastern Spain. For Pathol 43:331–339. doi: 10.1111/efp.12037 es_ES
dc.description.references Pulido F, McCreary D, Cañellas I et al (2013) Oak regeneration: ecological dynamics and restoration techniques. In: Campos P, Huntsinger L, Oviedo Pro JL (eds) Mediterranean oak woodland working landscapes. Springer, Dordrecht, pp 123–144 es_ES
dc.description.references Robin C, Capron G, Desprez-Loustau ML (2001) Root infection by Phytophthora cinnamomi in seedlings of three oak species. Plant Pathol 50:708–716. doi: 10.1046/j.1365-3059.2001.00643.x es_ES
dc.description.references Rodríguez-Molina MC, Torres-Vila LM, Blanco-Santos A et al (2002) Viability of holm and cork oak seedlings from acorns sown in soils naturally infected with Phytophthora cinnamomi. For Pathol 32:365–372. doi: 10.1046/j.1439-0329.2002.00297.x es_ES
dc.description.references Ruiz de la Torre J (2006) Flora mayor. Organismo Autónomo Parques Nacionales, Dirección General para la Biodiversidad, Madrid es_ES
dc.description.references Ruiz Gómez FJ, Navarro-Cerrillo RM, Sánchez-Cuesta R, Pérez-de-Luque A (2015) Histopathology of infection and colonization of Quercus ilex fine roots by Phytophthora cinnamomi. Plant Pathol 64:605–616. doi: 10.1111/ppa.12310 es_ES
dc.description.references Ruiz-Gómez FJ, Sánchez-Cuesta R, Navarro-Cerrillo RM, Pérez-de-Luque A (2012) A method to quantify infection and colonization of holm oak (Quercus ilex) roots by Phytophthora cinnamomi. Plant Methods 8:39. doi: 10.1186/1746-4811-8-39 es_ES
dc.description.references Rytkönen A, Lilja A, Werres S et al (2013) Infectivity, survival and pathology of Finnish strains of Phytophthora plurivora and Ph. pini in Norway spruce. Scand J For Res 28:307–318. doi: 10.1080/02827581.2012.756926 es_ES
dc.description.references Tsao PH (1990) Why many phytophthora root rots and crown rots of tree and horticultural crops remain undetected? EPPO Bull 20:11–17. doi: 10.1111/j.1365-2338.1990.tb01174.x es_ES
dc.description.references Underwood W (2012) The plant cell wall: a dynamic barrier against pathogen invasion. Front Plant Sci 3:85. doi: 10.3389/fpls.2012.00085 es_ES
dc.description.references Willetts HJ (1997) Morphology, development and evolution of stromata/sclerotia and macroconidia of the Sclerotiniaceae. Mycol Res 101:939–952. doi: 10.1017/S0953756297003559 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem