- -

Histology of Quercus ilex fine roots during infection by Phytophthora cinnamomi

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Histology of Quercus ilex fine roots during infection by Phytophthora cinnamomi

Mostrar el registro completo del ítem

Redondo, MÁ.; Pérez Sierra, AM.; Abad Campos, P.; Torres, L.; Solla, A.; Reig Armiñana, J.; García-Breijo, F. (2015). Histology of Quercus ilex fine roots during infection by Phytophthora cinnamomi. Trees - Structure and Function. 29(6):1943-1957. https://doi.org/10.1007/s00468-015-1275-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68170

Ficheros en el ítem

Metadatos del ítem

Título: Histology of Quercus ilex fine roots during infection by Phytophthora cinnamomi
Autor: Redondo, Miguel Ángel Pérez Sierra, Ana María Abad Campos, Paloma Torres, Lilian Solla, Alejandro Reig Armiñana, José García-Breijo, Francisco-José
Entidad UPV: Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] This study aimed to elucidate the infection process of the invasive pathogen Phytophthora cinnamomi on primary and secondary roots of 2-month-old Quercus ilex seedlings. To test if different methods of inoculation ...[+]
Palabras clave: Cell structure , Histological alterations , Histopathology , Microscopy , Pathogenesis , Invasive pathogen
Derechos de uso: Reserva de todos los derechos
Fuente:
Trees - Structure and Function. (issn: 0931-1890 ) (eissn: 1432-2285 )
DOI: 10.1007/s00468-015-1275-3
Editorial:
Springer Verlag (Germany)
Versión del editor: https://dx.doi.org/10.1007/s00468-015-1275-3
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//AGL2011-30438-C02-02/ES/REGENERACION DE QUERCUS ILEX ANTE NUEVAS ESPECIES DE PHYTOPHTHORA DETECTADAS EN EL AMBITO FORESTAL/
info:eu-repo/grantAgreement/MICINN//AGL2011-30438-C02-01/ES/APLICACION DE TECNICAS MOLECULARES PARA VALORAR LA IMPLICACION DE PHYTOPHTHORA SPP. EN EL DECAIMIENTO DE QUERCUS ILEX/
"Julio Iranzo'' laboratory from the Botanic Garden of Valencia
Agradecimientos:
This research was financially supported by the Project AGL2011-30438, by the Vicerrectorado de Investigacion from the Polytechnic University of Valencia, and by the "Julio Iranzo'' laboratory from the Botanic Garden of ...[+]
Tipo: Artículo

References

Blaschke H (1994) Decline symptoms on roots of Quercus robur. Eur J For Pathol 24:386–398. doi: 10.1111/j.1439-0329.1994.tb00832.x

Brummer M, Arend M, Fromm J et al (2002) Ultrastructural changes and immunocytochemical localization of the elicitin quercinin in Quercus robur L. roots infected with Phytophthora quercina. Physiol Mol Plant Pathol 61:109–120. doi: 10.1006/pmpp.2002.0419

Cahill DM, Weste GM, Grant BR (1986) Changes in cytokinin concentrations in xylem extrudate following Infection of Eucalyptus marginata Donn ex Sm with Phytophthora cinnamomi Rands. Plant Physiol 81:1103–1109 [+]
Blaschke H (1994) Decline symptoms on roots of Quercus robur. Eur J For Pathol 24:386–398. doi: 10.1111/j.1439-0329.1994.tb00832.x

Brummer M, Arend M, Fromm J et al (2002) Ultrastructural changes and immunocytochemical localization of the elicitin quercinin in Quercus robur L. roots infected with Phytophthora quercina. Physiol Mol Plant Pathol 61:109–120. doi: 10.1006/pmpp.2002.0419

Cahill DM, Weste GM, Grant BR (1986) Changes in cytokinin concentrations in xylem extrudate following Infection of Eucalyptus marginata Donn ex Sm with Phytophthora cinnamomi Rands. Plant Physiol 81:1103–1109

Cahill D, Legge B, Weste GM (1989) Cellular and histological changes induced by Phytophthora cinnamomi in a group of plant species ranging from fully susceptible to fully resistant. Phytopathology 79:417–424. doi: 10.1094/Phyto-79-417

Casano LM, del Campo EM, García-Breijo FJ et al (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13:806–818. doi: 10.1111/j.1462-2920.2010.02386.x

Corcobado T, Cubera E, Pérez-Sierra A et al (2010) First report of Phytophthora gonapodyides involved in the decline of Quercus ilex in xeric conditions in Spain. New Dis Rep 22:33

Corcobado T, Cubera E, Moreno G, Solla A (2013) Quercus ilex forests are influenced by annual variations in water table, soil water deficit and fine root loss caused by Phytophthora cinnamomi. Agric For Meteorol 169:92–99. doi: 10.1016/j.agrformet.2012.09.017

Corcobado T, Cubera E, Juárez E et al (2014) Drought events determine performance of Quercus ilex seedlings and increase their susceptibility to Phytophthora cinnamomi. Agric For Meteorol 192–193:1–8. doi: 10.1016/j.agrformet.2014.02.007

Crone M, McComb JA, O’Brien PA, Hardy GESJ (2013a) Survival of Phytophthora cinnamomi as oospores, stromata, and thick-walled chlamydospores in roots of symptomatic and asymptomatic annual and herbaceous perennial plant species. Fungal Biol 117:112–123. doi: 10.1016/j.funbio.2012.12.004

Crone M, McComb JA, O’Brien PA, Hardy GESJ (2013b) Assessment of Australian native annual/herbaceous perennial plant species as asymptomatic or symptomatic hosts of Phytophthora cinnamomi under controlled conditions. For Pathol 43:245–251. doi: 10.1111/efp.12027

Cubera E, Moreno G, Solla A, Madeira M (2012) Root system of Quercus suber L. seedlings in response to herbaceous competition and different watering and fertilisation regimes. Agrofor Syst 85:205–214. doi: 10.1007/s10457-012-9492-x

Dalio RJD, Fleischmann F, Humez M, Osswald W (2014) Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition. PLoS One 9:e87860. doi: 10.1371/journal.pone.0087860

de Camilo-Alves C, de Sampaio P, da Clara MIE, de Almeida Ribeiro NMC (2013) Decline of mediterranean oak trees and its association with Phytophthora cinnamomi: a review. Eur J For Res 132:411–432. doi: 10.1007/s10342-013-0688-z

Fahn A (1990) Plant anatomy. Pergamon Press, Oxford

Hansen EM, Parke JL, Sutton W (2005) Susceptibility of Oregon forest trees and shrubs to Phytophthora ramorum: a comparison of artificial inoculation and natural infection. Plant Dis 89:63–70. doi: 10.1094/PD-89-0063

Haque MMU, Diez JJ (2012) Susceptibility of common alder (Alnus glutinosa) seeds and seedlings to Phytophthora alni and other Phytophthora species. For Syst 21:313–322. doi: 10.5424/fs/2012212-02267

Hardham AR (2001) The cell biology behind Phytophthora pathogenicity. Australas Plant Pathol 30:91–98. doi: 10.1071/AP01006

Hardham AR (2005) Phytophthora cinnamomi. Mol Plant Pathol 6:589–604. doi: 10.1111/j.1364-3703.2005.00308.x

Hatakka A (2005) Biodegradation of lignin. Biopolym Online. doi: 10.1002/3527600035.bpol1005

Horta M, Caetano P, Medeira C et al (2010) Involvement of the β-cinnamomin elicitin in infection and colonisation of cork oak roots by Phytophthora cinnamomi. Eur J Plant Pathol 127:427–436. doi: 10.1007/s10658-010-9609-x

Judelson HS, Blanco FA (2005) The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol 3:47–58. doi: 10.1038/nrmicro1064

Jung T, Cooke DEL, Blaschke H et al (1999) Phytophthora quercina sp. nov., causing root rot of European oaks. Mycol Res 103:785–798. doi: 10.1017/S0953756298007734

Jung T, Colquhoun IJ, Hardy GESJ (2013) New insights into the survival strategy of the invasive soilborne pathogen Phytophthora cinnamomi in different natural ecosystems in Western Australia. For Pathol 43:266–288. doi: 10.1111/efp.12025

Kamoun S, Furzer O, Jones JDG et al (2015) The top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol 16:413–434. doi: 10.1111/mpp.12190

Laliberté E, Lambers H, Burgess TI, Wright SJ (2015) Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. N Phytol 206:507–521. doi: 10.1111/nph.13203

Linaldeddu BT, Scanu B, Maddau L, Franceschini A (2014) Diplodia corticola and Phytophthora cinnamomi: the main pathogens involved in holm oak decline on Caprera Island (Italy). For Pathol 44:191–200. doi: 10.1111/efp.12081

Lu Y-J, Schornack S, Spallek T et al (2012) Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking. Cell Microbiol 14:682–697. doi: 10.1111/j.1462-5822.2012.01751.x

Martín-García J, Solla A, Corcobado T et al (2015) Influence of temperature on germination of Quercus ilex in Phytophthora cinnamomi, P. gonapodyides, P. quercina and P. psychrophila infested soils. For Pathol 45:215–223. doi: 10.1111/efp.12159

Maurel M, Robin C, Capron G, Desprez-Loustau M-L (2001) Effects of root damage associated with Phytophthora cinnamomi on water relations, biomass accumulation, mineral nutrition and vulnerability to water deficit of five oak and chestnut species. For Pathol 31:353–369. doi: 10.1046/j.1439-0329.2001.00258.x

McConnell ME, Balci Y (2015) Fine root dynamics of oak saplings in response to Phytophthora cinnamomi infection under different temperatures and durations. For Pathol 45:155–164. doi: 10.1111/efp.12150

Mullendore DL, Windt CW, As HV, Knoblauch M (2010) Sieve tube geometry in relation to phloem flow. Plant Cell Online 22:579–593. doi: 10.1105/tpc.109.070094

O’Gara E, Howard K, McComb J et al (2015) Penetration of suberized periderm of a woody host by Phytophthora cinnamomi. Plant Pathol 64:207–215. doi: 10.1111/ppa.12244

Oh E, Hansen EM (2007) Histopathology of infection and colonization of susceptible and resistant Port-Orford-Cedar by Phytophthora lateralis. Phytopathology 97:684–693. doi: 10.1094/PHYTO-97-6-0684

Oßwald W, Fleischmann F, Rigling D et al (2014) Strategies of attack and defence in woody plant–Phytophthora interactions. For Pathol 44:169–190. doi: 10.1111/efp.12096

Pérez-Sierra A, López-García C, León M et al (2013) Previously unrecorded low-temperature Phytophthora species associated with Quercus decline in a Mediterranean forest in eastern Spain. For Pathol 43:331–339. doi: 10.1111/efp.12037

Pulido F, McCreary D, Cañellas I et al (2013) Oak regeneration: ecological dynamics and restoration techniques. In: Campos P, Huntsinger L, Oviedo Pro JL (eds) Mediterranean oak woodland working landscapes. Springer, Dordrecht, pp 123–144

Robin C, Capron G, Desprez-Loustau ML (2001) Root infection by Phytophthora cinnamomi in seedlings of three oak species. Plant Pathol 50:708–716. doi: 10.1046/j.1365-3059.2001.00643.x

Rodríguez-Molina MC, Torres-Vila LM, Blanco-Santos A et al (2002) Viability of holm and cork oak seedlings from acorns sown in soils naturally infected with Phytophthora cinnamomi. For Pathol 32:365–372. doi: 10.1046/j.1439-0329.2002.00297.x

Ruiz de la Torre J (2006) Flora mayor. Organismo Autónomo Parques Nacionales, Dirección General para la Biodiversidad, Madrid

Ruiz Gómez FJ, Navarro-Cerrillo RM, Sánchez-Cuesta R, Pérez-de-Luque A (2015) Histopathology of infection and colonization of Quercus ilex fine roots by Phytophthora cinnamomi. Plant Pathol 64:605–616. doi: 10.1111/ppa.12310

Ruiz-Gómez FJ, Sánchez-Cuesta R, Navarro-Cerrillo RM, Pérez-de-Luque A (2012) A method to quantify infection and colonization of holm oak (Quercus ilex) roots by Phytophthora cinnamomi. Plant Methods 8:39. doi: 10.1186/1746-4811-8-39

Rytkönen A, Lilja A, Werres S et al (2013) Infectivity, survival and pathology of Finnish strains of Phytophthora plurivora and Ph. pini in Norway spruce. Scand J For Res 28:307–318. doi: 10.1080/02827581.2012.756926

Tsao PH (1990) Why many phytophthora root rots and crown rots of tree and horticultural crops remain undetected? EPPO Bull 20:11–17. doi: 10.1111/j.1365-2338.1990.tb01174.x

Underwood W (2012) The plant cell wall: a dynamic barrier against pathogen invasion. Front Plant Sci 3:85. doi: 10.3389/fpls.2012.00085

Willetts HJ (1997) Morphology, development and evolution of stromata/sclerotia and macroconidia of the Sclerotiniaceae. Mycol Res 101:939–952. doi: 10.1017/S0953756297003559

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem