- -

Modeling Ultrasonically Assisted Convective Drying of Eggplan

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Modeling Ultrasonically Assisted Convective Drying of Eggplan

Show full item record

García Pérez, JV.; Ozuna López, C.; Ortuño Cases, C.; Carcel Carrión, JA.; Mulet Pons, A. (2011). Modeling Ultrasonically Assisted Convective Drying of Eggplan. Drying Technology. 29(13):1499-1509. doi:10.1080/07373937.2011.576321

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68180

Files in this item

Item Metadata

Title: Modeling Ultrasonically Assisted Convective Drying of Eggplan
Author: García Pérez, José Vicente Ozuna López, César Ortuño Cases, Carmen Cárcel Carrión, Juan Andrés Mulet Pons, Antonio
UPV Unit: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Issued date:
Abstract:
[EN] Modeling constitutes a fundamental tool with which to analyze the influence of ultrasound on mass transfer phenomena during drying. In this work, the study of the effect of power ultrasound application on the drying ...[+]
Subjects: Dehydration , Diffusion , Mass transfer , Shrinkage , Ultrasound , Complex model , Convective drying , Drying kinetic , Effective moisture diffusivity , Empirical approach , Experimental data , External resistance , Fundamental tools , Industrial scale , Linear relationships , Mass transfer phenomena , Mean relative error , Power ultrasound , Sorption isotherms , Ultrasonic power , Ultrasound technology , Bond strength (chemical) , Heat convection , Kinetics , Sorption , Ultrasonics , Drying
Copyrigths: Reserva de todos los derechos
Source:
Drying Technology. (issn: 0737-3937 )
DOI: 10.1080/07373937.2011.576321
Publisher:
Taylor & Francis
Publisher version: https://dx.doi.org/10.1080/07373937.2011.576321
Type: Artículo

References

Mujumdar, A. S. (2006). An overview of innovation in industrial drying: current status and R&D needs. Transport in Porous Media, 66(1-2), 3-18. doi:10.1007/s11242-006-9018-y

Chou, S. K., & Chua, K. J. (2001). New hybrid drying technologies for heat sensitive foodstuffs. Trends in Food Science & Technology, 12(10), 359-369. doi:10.1016/s0924-2244(01)00102-9

Lewicki, P. P. (2006). Design of hot air drying for better foods. Trends in Food Science & Technology, 17(4), 153-163. doi:10.1016/j.tifs.2005.10.012 [+]
Mujumdar, A. S. (2006). An overview of innovation in industrial drying: current status and R&D needs. Transport in Porous Media, 66(1-2), 3-18. doi:10.1007/s11242-006-9018-y

Chou, S. K., & Chua, K. J. (2001). New hybrid drying technologies for heat sensitive foodstuffs. Trends in Food Science & Technology, 12(10), 359-369. doi:10.1016/s0924-2244(01)00102-9

Lewicki, P. P. (2006). Design of hot air drying for better foods. Trends in Food Science & Technology, 17(4), 153-163. doi:10.1016/j.tifs.2005.10.012

Santos, P. H. S., & Silva, M. A. (2009). Kinetics ofL-Ascorbic Acid Degradation in Pineapple Drying under Ethanolic Atmosphere. Drying Technology, 27(9), 947-954. doi:10.1080/07373930902901950

Suvarnakuta, P., Devahastin, S., & Mujumdar, A. S. (2005). Drying Kinetics and β-Carotene Degradation in Carrot Undergoing Different Drying Processes. Journal of Food Science, 70(8), s520-s526. doi:10.1111/j.1365-2621.2005.tb11528.x

Mayor, L., & Sereno, A. M. (2004). Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering, 61(3), 373-386. doi:10.1016/s0260-8774(03)00144-4

Gallego-Juarez, J. A. (2010). High-power ultrasonic processing: Recent developments and prospective advances. Physics Procedia, 3(1), 35-47. doi:10.1016/j.phpro.2010.01.006

De la Fuente-Blanco, S., Riera-Franco de Sarabia, E., Acosta-Aparicio, V. M., Blanco-Blanco, A., & Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, e523-e527. doi:10.1016/j.ultras.2006.05.181

García-Pérez, J. V., Cárcel, J. A., Riera, E., & Mulet, A. (2009). Influence of the Applied Acoustic Energy on the Drying of Carrots and Lemon Peel. Drying Technology, 27(2), 281-287. doi:10.1080/07373930802606428

García-Pérez, J. V., Cárcel, J. A., Clemente, G., & Mulet, A. (2008). Water sorption isotherms for lemon peel at different temperatures and isosteric heats. LWT - Food Science and Technology, 41(1), 18-25. doi:10.1016/j.lwt.2007.02.010

Mulet, A. (1994). Drying modelling and water diffusivity in carrots and potatoes. Journal of Food Engineering, 22(1-4), 329-348. doi:10.1016/0260-8774(94)90038-8

Cunha, L. M., Oliveira, F. A. R., & Oliveira, J. C. (1998). Optimal experimental design for estimating the kinetic parameters of processes described by the Weibull probability distribution function. Journal of Food Engineering, 37(2), 175-191. doi:10.1016/s0260-8774(98)00085-5

Azzouz, S., Guizani, A., Jomaa, W., & Belghith, A. (2002). Moisture diffusivity and drying kinetic equation of convective drying of grapes. Journal of Food Engineering, 55(4), 323-330. doi:10.1016/s0260-8774(02)00109-7

Simal, S., Femenia, A., Garau, M. C., & Rosselló, C. (2005). Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66(3), 323-328. doi:10.1016/j.jfoodeng.2004.03.025

Maroulis, Z. B., Saravacos, G. D., Panagiotou, N. M., & Krokida, M. K. (2001). MOISTURE DIFFUSIVITY DATA COMPILATION FOR FOODSTUFFS: EFFECT OF MATERIAL MOISTURE CONTENT AND TEMPERATURE. International Journal of Food Properties, 4(2), 225-237. doi:10.1081/jfp-100105189

Simal, S., Femenia, A., Garcia-Pascual, P., & Rosselló, C. (2003). Simulation of the drying curves of a meat-based product: effect of the external resistance to mass transfer. Journal of Food Engineering, 58(2), 193-199. doi:10.1016/s0260-8774(02)00369-2

Queiroz, M. R., & Nebra, S. A. (2001). Theoretical and experimental analysis of the drying kinetics of bananas. Journal of Food Engineering, 47(2), 127-132. doi:10.1016/s0260-8774(00)00108-4

Hassini, L., Azzouz, S., Peczalski, R., & Belghith, A. (2007). Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering, 79(1), 47-56. doi:10.1016/j.jfoodeng.2006.01.025

Hernández, J. A., Pavón, G., & Garcı́a, M. A. (2000). Analytical solution of mass transfer equation considering shrinkage for modeling food-drying kinetics. Journal of Food Engineering, 45(1), 1-10. doi:10.1016/s0260-8774(00)00033-9

Souma, S., Tagawa, A., & Iimoto, M. (2004). Structural Properties for Fruits and Vegetables during Drying. NIPPON SHOKUHIN KAGAKU KOGAKU KAISHI, 51(11), 577-584. doi:10.3136/nskkk.51.577

García-Pérez, J. V., Cárcel, J. A., de la Fuente-Blanco, S., & Riera-Franco de Sarabia, E. (2006). Ultrasonic drying of foodstuff in a fluidized bed: Parametric study. Ultrasonics, 44, e539-e543. doi:10.1016/j.ultras.2006.06.059

Cárcel, J. A., García-Pérez, J. V., Riera, E., & Mulet, A. (2007). Influence of High-Intensity Ultrasound on Drying Kinetics of Persimmon. Drying Technology, 25(1), 185-193. doi:10.1080/07373930601161070

Blasco, M., García-Pérez, J. V., Bon, J., Carreres, J. E., & Mulet, A. (2006). Effect of Blanching and Air Flow Rate on Turmeric Drying. Food Science and Technology International, 12(4), 315-323. doi:10.1177/1082013206067352

Garau, M. C., Simal, S., Femenia, A., & Rosselló, C. (2006). Drying of orange skin: drying kinetics modelling and functional properties. Journal of Food Engineering, 75(2), 288-295. doi:10.1016/j.jfoodeng.2005.04.017

Wu, L., Orikasa, T., Ogawa, Y., & Tagawa, A. (2007). Vacuum drying characteristics of eggplants. Journal of Food Engineering, 83(3), 422-429. doi:10.1016/j.jfoodeng.2007.03.030

Chaves , M. ; Sgroppo , S.C. ; Avanza , J.R. Cinéticas de secado de berenjena (Solanum melongenaL.). Comunicaciones Científicas y Tecnológicas (Universidad Nacional del Nordeste Corrientes Argentina),2003,Resumen E-060 .

Akpinar, E. K., & Bicer, Y. (2005). Modelling of the drying of eggplants in thin-layers. International Journal of Food Science and Technology, 40(3), 273-281. doi:10.1111/j.1365-2621.2004.00886.x

De Lima, A. (2002). Simultaneous moisture transport and shrinkage during drying of solids with ellipsoidal configuration. Chemical Engineering Journal, 86(1-2), 85-93. doi:10.1016/s1385-8947(01)00276-5

RAHMAN, N., & KUMAR, S. (2007). INFLUENCE OF SAMPLE SIZE AND SHAPE ON TRANSPORT PARAMETERS DURING DRYING OF SHRINKING BODIES. Journal of Food Process Engineering, 30(2), 186-203. doi:10.1111/j.1745-4530.2007.00104.x

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record