- -

Modeling Ultrasonically Assisted Convective Drying of Eggplan

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling Ultrasonically Assisted Convective Drying of Eggplan

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Pérez, José Vicente es_ES
dc.contributor.author Ozuna López, César es_ES
dc.contributor.author Ortuño Cases, Carmen es_ES
dc.contributor.author Cárcel Carrión, Juan Andrés es_ES
dc.contributor.author Mulet Pons, Antonio es_ES
dc.date.accessioned 2016-07-26T07:40:23Z
dc.date.available 2016-07-26T07:40:23Z
dc.date.issued 2011
dc.identifier.issn 0737-3937
dc.identifier.uri http://hdl.handle.net/10251/68180
dc.description.abstract [EN] Modeling constitutes a fundamental tool with which to analyze the influence of ultrasound on mass transfer phenomena during drying. In this work, the study of the effect of power ultrasound application on the drying kinetics of eggplant was addressed by using different models based on theoretical (diffusion) or empirical approaches. Drying kinetics of eggplant cylinders (height 20mm and diameter 24 mm) were carried at 40°C and 1 m/s applying different ultrasonic powers: 0, 6, 12, 19, 25, 31, and 37 kW/m 3. The experiments were carried out at least three times at each different ultrasonic power. Shrinkage and sorption isotherms were also addressed in order to attain an optimal description of eggplant drying. Applying ultrasound sped up the drying kinetics. The ultrasonic power was identified as having a significant (p<0.05) influence on both the effective moisture diffusivity and the mass transfer coefficient, which was well explained by linear relationships. The most complex model, which considered both external resistance and shrinkage to be significant phenomena, provided the best agreement with experimental data, giving percentages of explained variance of over 99.9% and mean relative errors of under 1.2% in every case. According to these results, ultrasound technology could have the potential to improve the convective drying of eggplant at an industrial scale. © 2011 Taylor & Francis Group, LLC. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Drying Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dehydration es_ES
dc.subject Diffusion es_ES
dc.subject Mass transfer es_ES
dc.subject Shrinkage es_ES
dc.subject Ultrasound es_ES
dc.subject Complex model es_ES
dc.subject Convective drying es_ES
dc.subject Drying kinetic es_ES
dc.subject Effective moisture diffusivity es_ES
dc.subject Empirical approach es_ES
dc.subject Experimental data es_ES
dc.subject External resistance es_ES
dc.subject Fundamental tools es_ES
dc.subject Industrial scale es_ES
dc.subject Linear relationships es_ES
dc.subject Mass transfer phenomena es_ES
dc.subject Mean relative error es_ES
dc.subject Power ultrasound es_ES
dc.subject Sorption isotherms es_ES
dc.subject Ultrasonic power es_ES
dc.subject Ultrasound technology es_ES
dc.subject Bond strength (chemical) es_ES
dc.subject Heat convection es_ES
dc.subject Kinetics es_ES
dc.subject Sorption es_ES
dc.subject Ultrasonics es_ES
dc.subject Drying es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Modeling Ultrasonically Assisted Convective Drying of Eggplan es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/07373937.2011.576321
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation García Pérez, JV.; Ozuna López, C.; Ortuño Cases, C.; Carcel Carrión, JA.; Mulet Pons, A. (2011). Modeling Ultrasonically Assisted Convective Drying of Eggplan. Drying Technology. 29(13):1499-1509. doi:10.1080/07373937.2011.576321 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1080/07373937.2011.576321 es_ES
dc.description.upvformatpinicio 1499 es_ES
dc.description.upvformatpfin 1509 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 13 es_ES
dc.relation.senia 214242 es_ES
dc.description.references Mujumdar, A. S. (2006). An overview of innovation in industrial drying: current status and R&D needs. Transport in Porous Media, 66(1-2), 3-18. doi:10.1007/s11242-006-9018-y es_ES
dc.description.references Chou, S. K., & Chua, K. J. (2001). New hybrid drying technologies for heat sensitive foodstuffs. Trends in Food Science & Technology, 12(10), 359-369. doi:10.1016/s0924-2244(01)00102-9 es_ES
dc.description.references Lewicki, P. P. (2006). Design of hot air drying for better foods. Trends in Food Science & Technology, 17(4), 153-163. doi:10.1016/j.tifs.2005.10.012 es_ES
dc.description.references Santos, P. H. S., & Silva, M. A. (2009). Kinetics ofL-Ascorbic Acid Degradation in Pineapple Drying under Ethanolic Atmosphere. Drying Technology, 27(9), 947-954. doi:10.1080/07373930902901950 es_ES
dc.description.references Suvarnakuta, P., Devahastin, S., & Mujumdar, A. S. (2005). Drying Kinetics and β-Carotene Degradation in Carrot Undergoing Different Drying Processes. Journal of Food Science, 70(8), s520-s526. doi:10.1111/j.1365-2621.2005.tb11528.x es_ES
dc.description.references Mayor, L., & Sereno, A. M. (2004). Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering, 61(3), 373-386. doi:10.1016/s0260-8774(03)00144-4 es_ES
dc.description.references Gallego-Juarez, J. A. (2010). High-power ultrasonic processing: Recent developments and prospective advances. Physics Procedia, 3(1), 35-47. doi:10.1016/j.phpro.2010.01.006 es_ES
dc.description.references De la Fuente-Blanco, S., Riera-Franco de Sarabia, E., Acosta-Aparicio, V. M., Blanco-Blanco, A., & Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, e523-e527. doi:10.1016/j.ultras.2006.05.181 es_ES
dc.description.references García-Pérez, J. V., Cárcel, J. A., Riera, E., & Mulet, A. (2009). Influence of the Applied Acoustic Energy on the Drying of Carrots and Lemon Peel. Drying Technology, 27(2), 281-287. doi:10.1080/07373930802606428 es_ES
dc.description.references García-Pérez, J. V., Cárcel, J. A., Clemente, G., & Mulet, A. (2008). Water sorption isotherms for lemon peel at different temperatures and isosteric heats. LWT - Food Science and Technology, 41(1), 18-25. doi:10.1016/j.lwt.2007.02.010 es_ES
dc.description.references Mulet, A. (1994). Drying modelling and water diffusivity in carrots and potatoes. Journal of Food Engineering, 22(1-4), 329-348. doi:10.1016/0260-8774(94)90038-8 es_ES
dc.description.references Cunha, L. M., Oliveira, F. A. R., & Oliveira, J. C. (1998). Optimal experimental design for estimating the kinetic parameters of processes described by the Weibull probability distribution function. Journal of Food Engineering, 37(2), 175-191. doi:10.1016/s0260-8774(98)00085-5 es_ES
dc.description.references Azzouz, S., Guizani, A., Jomaa, W., & Belghith, A. (2002). Moisture diffusivity and drying kinetic equation of convective drying of grapes. Journal of Food Engineering, 55(4), 323-330. doi:10.1016/s0260-8774(02)00109-7 es_ES
dc.description.references Simal, S., Femenia, A., Garau, M. C., & Rosselló, C. (2005). Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66(3), 323-328. doi:10.1016/j.jfoodeng.2004.03.025 es_ES
dc.description.references Maroulis, Z. B., Saravacos, G. D., Panagiotou, N. M., & Krokida, M. K. (2001). MOISTURE DIFFUSIVITY DATA COMPILATION FOR FOODSTUFFS: EFFECT OF MATERIAL MOISTURE CONTENT AND TEMPERATURE. International Journal of Food Properties, 4(2), 225-237. doi:10.1081/jfp-100105189 es_ES
dc.description.references Simal, S., Femenia, A., Garcia-Pascual, P., & Rosselló, C. (2003). Simulation of the drying curves of a meat-based product: effect of the external resistance to mass transfer. Journal of Food Engineering, 58(2), 193-199. doi:10.1016/s0260-8774(02)00369-2 es_ES
dc.description.references Queiroz, M. R., & Nebra, S. A. (2001). Theoretical and experimental analysis of the drying kinetics of bananas. Journal of Food Engineering, 47(2), 127-132. doi:10.1016/s0260-8774(00)00108-4 es_ES
dc.description.references Hassini, L., Azzouz, S., Peczalski, R., & Belghith, A. (2007). Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering, 79(1), 47-56. doi:10.1016/j.jfoodeng.2006.01.025 es_ES
dc.description.references Hernández, J. A., Pavón, G., & Garcı́a, M. A. (2000). Analytical solution of mass transfer equation considering shrinkage for modeling food-drying kinetics. Journal of Food Engineering, 45(1), 1-10. doi:10.1016/s0260-8774(00)00033-9 es_ES
dc.description.references Souma, S., Tagawa, A., & Iimoto, M. (2004). Structural Properties for Fruits and Vegetables during Drying. NIPPON SHOKUHIN KAGAKU KOGAKU KAISHI, 51(11), 577-584. doi:10.3136/nskkk.51.577 es_ES
dc.description.references García-Pérez, J. V., Cárcel, J. A., de la Fuente-Blanco, S., & Riera-Franco de Sarabia, E. (2006). Ultrasonic drying of foodstuff in a fluidized bed: Parametric study. Ultrasonics, 44, e539-e543. doi:10.1016/j.ultras.2006.06.059 es_ES
dc.description.references Cárcel, J. A., García-Pérez, J. V., Riera, E., & Mulet, A. (2007). Influence of High-Intensity Ultrasound on Drying Kinetics of Persimmon. Drying Technology, 25(1), 185-193. doi:10.1080/07373930601161070 es_ES
dc.description.references Blasco, M., García-Pérez, J. V., Bon, J., Carreres, J. E., & Mulet, A. (2006). Effect of Blanching and Air Flow Rate on Turmeric Drying. Food Science and Technology International, 12(4), 315-323. doi:10.1177/1082013206067352 es_ES
dc.description.references Garau, M. C., Simal, S., Femenia, A., & Rosselló, C. (2006). Drying of orange skin: drying kinetics modelling and functional properties. Journal of Food Engineering, 75(2), 288-295. doi:10.1016/j.jfoodeng.2005.04.017 es_ES
dc.description.references Wu, L., Orikasa, T., Ogawa, Y., & Tagawa, A. (2007). Vacuum drying characteristics of eggplants. Journal of Food Engineering, 83(3), 422-429. doi:10.1016/j.jfoodeng.2007.03.030 es_ES
dc.description.references Chaves , M. ; Sgroppo , S.C. ; Avanza , J.R. Cinéticas de secado de berenjena (Solanum melongenaL.). Comunicaciones Científicas y Tecnológicas (Universidad Nacional del Nordeste Corrientes Argentina),2003,Resumen E-060 . es_ES
dc.description.references Akpinar, E. K., & Bicer, Y. (2005). Modelling of the drying of eggplants in thin-layers. International Journal of Food Science and Technology, 40(3), 273-281. doi:10.1111/j.1365-2621.2004.00886.x es_ES
dc.description.references De Lima, A. (2002). Simultaneous moisture transport and shrinkage during drying of solids with ellipsoidal configuration. Chemical Engineering Journal, 86(1-2), 85-93. doi:10.1016/s1385-8947(01)00276-5 es_ES
dc.description.references RAHMAN, N., & KUMAR, S. (2007). INFLUENCE OF SAMPLE SIZE AND SHAPE ON TRANSPORT PARAMETERS DURING DRYING OF SHRINKING BODIES. Journal of Food Process Engineering, 30(2), 186-203. doi:10.1111/j.1745-4530.2007.00104.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem