Mostrar el registro sencillo del ítem
dc.contributor.author | García Pérez, José Vicente | es_ES |
dc.contributor.author | Ozuna López, César | es_ES |
dc.contributor.author | Ortuño Cases, Carmen | es_ES |
dc.contributor.author | Cárcel Carrión, Juan Andrés | es_ES |
dc.contributor.author | Mulet Pons, Antonio | es_ES |
dc.date.accessioned | 2016-07-26T07:40:23Z | |
dc.date.available | 2016-07-26T07:40:23Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0737-3937 | |
dc.identifier.uri | http://hdl.handle.net/10251/68180 | |
dc.description.abstract | [EN] Modeling constitutes a fundamental tool with which to analyze the influence of ultrasound on mass transfer phenomena during drying. In this work, the study of the effect of power ultrasound application on the drying kinetics of eggplant was addressed by using different models based on theoretical (diffusion) or empirical approaches. Drying kinetics of eggplant cylinders (height 20mm and diameter 24 mm) were carried at 40°C and 1 m/s applying different ultrasonic powers: 0, 6, 12, 19, 25, 31, and 37 kW/m 3. The experiments were carried out at least three times at each different ultrasonic power. Shrinkage and sorption isotherms were also addressed in order to attain an optimal description of eggplant drying. Applying ultrasound sped up the drying kinetics. The ultrasonic power was identified as having a significant (p<0.05) influence on both the effective moisture diffusivity and the mass transfer coefficient, which was well explained by linear relationships. The most complex model, which considered both external resistance and shrinkage to be significant phenomena, provided the best agreement with experimental data, giving percentages of explained variance of over 99.9% and mean relative errors of under 1.2% in every case. According to these results, ultrasound technology could have the potential to improve the convective drying of eggplant at an industrial scale. © 2011 Taylor & Francis Group, LLC. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Drying Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Dehydration | es_ES |
dc.subject | Diffusion | es_ES |
dc.subject | Mass transfer | es_ES |
dc.subject | Shrinkage | es_ES |
dc.subject | Ultrasound | es_ES |
dc.subject | Complex model | es_ES |
dc.subject | Convective drying | es_ES |
dc.subject | Drying kinetic | es_ES |
dc.subject | Effective moisture diffusivity | es_ES |
dc.subject | Empirical approach | es_ES |
dc.subject | Experimental data | es_ES |
dc.subject | External resistance | es_ES |
dc.subject | Fundamental tools | es_ES |
dc.subject | Industrial scale | es_ES |
dc.subject | Linear relationships | es_ES |
dc.subject | Mass transfer phenomena | es_ES |
dc.subject | Mean relative error | es_ES |
dc.subject | Power ultrasound | es_ES |
dc.subject | Sorption isotherms | es_ES |
dc.subject | Ultrasonic power | es_ES |
dc.subject | Ultrasound technology | es_ES |
dc.subject | Bond strength (chemical) | es_ES |
dc.subject | Heat convection | es_ES |
dc.subject | Kinetics | es_ES |
dc.subject | Sorption | es_ES |
dc.subject | Ultrasonics | es_ES |
dc.subject | Drying | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Modeling Ultrasonically Assisted Convective Drying of Eggplan | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/07373937.2011.576321 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | García Pérez, JV.; Ozuna López, C.; Ortuño Cases, C.; Carcel Carrión, JA.; Mulet Pons, A. (2011). Modeling Ultrasonically Assisted Convective Drying of Eggplan. Drying Technology. 29(13):1499-1509. doi:10.1080/07373937.2011.576321 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1080/07373937.2011.576321 | es_ES |
dc.description.upvformatpinicio | 1499 | es_ES |
dc.description.upvformatpfin | 1509 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 13 | es_ES |
dc.relation.senia | 214242 | es_ES |
dc.description.references | Mujumdar, A. S. (2006). An overview of innovation in industrial drying: current status and R&D needs. Transport in Porous Media, 66(1-2), 3-18. doi:10.1007/s11242-006-9018-y | es_ES |
dc.description.references | Chou, S. K., & Chua, K. J. (2001). New hybrid drying technologies for heat sensitive foodstuffs. Trends in Food Science & Technology, 12(10), 359-369. doi:10.1016/s0924-2244(01)00102-9 | es_ES |
dc.description.references | Lewicki, P. P. (2006). Design of hot air drying for better foods. Trends in Food Science & Technology, 17(4), 153-163. doi:10.1016/j.tifs.2005.10.012 | es_ES |
dc.description.references | Santos, P. H. S., & Silva, M. A. (2009). Kinetics ofL-Ascorbic Acid Degradation in Pineapple Drying under Ethanolic Atmosphere. Drying Technology, 27(9), 947-954. doi:10.1080/07373930902901950 | es_ES |
dc.description.references | Suvarnakuta, P., Devahastin, S., & Mujumdar, A. S. (2005). Drying Kinetics and β-Carotene Degradation in Carrot Undergoing Different Drying Processes. Journal of Food Science, 70(8), s520-s526. doi:10.1111/j.1365-2621.2005.tb11528.x | es_ES |
dc.description.references | Mayor, L., & Sereno, A. M. (2004). Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering, 61(3), 373-386. doi:10.1016/s0260-8774(03)00144-4 | es_ES |
dc.description.references | Gallego-Juarez, J. A. (2010). High-power ultrasonic processing: Recent developments and prospective advances. Physics Procedia, 3(1), 35-47. doi:10.1016/j.phpro.2010.01.006 | es_ES |
dc.description.references | De la Fuente-Blanco, S., Riera-Franco de Sarabia, E., Acosta-Aparicio, V. M., Blanco-Blanco, A., & Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, e523-e527. doi:10.1016/j.ultras.2006.05.181 | es_ES |
dc.description.references | García-Pérez, J. V., Cárcel, J. A., Riera, E., & Mulet, A. (2009). Influence of the Applied Acoustic Energy on the Drying of Carrots and Lemon Peel. Drying Technology, 27(2), 281-287. doi:10.1080/07373930802606428 | es_ES |
dc.description.references | García-Pérez, J. V., Cárcel, J. A., Clemente, G., & Mulet, A. (2008). Water sorption isotherms for lemon peel at different temperatures and isosteric heats. LWT - Food Science and Technology, 41(1), 18-25. doi:10.1016/j.lwt.2007.02.010 | es_ES |
dc.description.references | Mulet, A. (1994). Drying modelling and water diffusivity in carrots and potatoes. Journal of Food Engineering, 22(1-4), 329-348. doi:10.1016/0260-8774(94)90038-8 | es_ES |
dc.description.references | Cunha, L. M., Oliveira, F. A. R., & Oliveira, J. C. (1998). Optimal experimental design for estimating the kinetic parameters of processes described by the Weibull probability distribution function. Journal of Food Engineering, 37(2), 175-191. doi:10.1016/s0260-8774(98)00085-5 | es_ES |
dc.description.references | Azzouz, S., Guizani, A., Jomaa, W., & Belghith, A. (2002). Moisture diffusivity and drying kinetic equation of convective drying of grapes. Journal of Food Engineering, 55(4), 323-330. doi:10.1016/s0260-8774(02)00109-7 | es_ES |
dc.description.references | Simal, S., Femenia, A., Garau, M. C., & Rosselló, C. (2005). Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66(3), 323-328. doi:10.1016/j.jfoodeng.2004.03.025 | es_ES |
dc.description.references | Maroulis, Z. B., Saravacos, G. D., Panagiotou, N. M., & Krokida, M. K. (2001). MOISTURE DIFFUSIVITY DATA COMPILATION FOR FOODSTUFFS: EFFECT OF MATERIAL MOISTURE CONTENT AND TEMPERATURE. International Journal of Food Properties, 4(2), 225-237. doi:10.1081/jfp-100105189 | es_ES |
dc.description.references | Simal, S., Femenia, A., Garcia-Pascual, P., & Rosselló, C. (2003). Simulation of the drying curves of a meat-based product: effect of the external resistance to mass transfer. Journal of Food Engineering, 58(2), 193-199. doi:10.1016/s0260-8774(02)00369-2 | es_ES |
dc.description.references | Queiroz, M. R., & Nebra, S. A. (2001). Theoretical and experimental analysis of the drying kinetics of bananas. Journal of Food Engineering, 47(2), 127-132. doi:10.1016/s0260-8774(00)00108-4 | es_ES |
dc.description.references | Hassini, L., Azzouz, S., Peczalski, R., & Belghith, A. (2007). Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering, 79(1), 47-56. doi:10.1016/j.jfoodeng.2006.01.025 | es_ES |
dc.description.references | Hernández, J. A., Pavón, G., & Garcı́a, M. A. (2000). Analytical solution of mass transfer equation considering shrinkage for modeling food-drying kinetics. Journal of Food Engineering, 45(1), 1-10. doi:10.1016/s0260-8774(00)00033-9 | es_ES |
dc.description.references | Souma, S., Tagawa, A., & Iimoto, M. (2004). Structural Properties for Fruits and Vegetables during Drying. NIPPON SHOKUHIN KAGAKU KOGAKU KAISHI, 51(11), 577-584. doi:10.3136/nskkk.51.577 | es_ES |
dc.description.references | García-Pérez, J. V., Cárcel, J. A., de la Fuente-Blanco, S., & Riera-Franco de Sarabia, E. (2006). Ultrasonic drying of foodstuff in a fluidized bed: Parametric study. Ultrasonics, 44, e539-e543. doi:10.1016/j.ultras.2006.06.059 | es_ES |
dc.description.references | Cárcel, J. A., García-Pérez, J. V., Riera, E., & Mulet, A. (2007). Influence of High-Intensity Ultrasound on Drying Kinetics of Persimmon. Drying Technology, 25(1), 185-193. doi:10.1080/07373930601161070 | es_ES |
dc.description.references | Blasco, M., García-Pérez, J. V., Bon, J., Carreres, J. E., & Mulet, A. (2006). Effect of Blanching and Air Flow Rate on Turmeric Drying. Food Science and Technology International, 12(4), 315-323. doi:10.1177/1082013206067352 | es_ES |
dc.description.references | Garau, M. C., Simal, S., Femenia, A., & Rosselló, C. (2006). Drying of orange skin: drying kinetics modelling and functional properties. Journal of Food Engineering, 75(2), 288-295. doi:10.1016/j.jfoodeng.2005.04.017 | es_ES |
dc.description.references | Wu, L., Orikasa, T., Ogawa, Y., & Tagawa, A. (2007). Vacuum drying characteristics of eggplants. Journal of Food Engineering, 83(3), 422-429. doi:10.1016/j.jfoodeng.2007.03.030 | es_ES |
dc.description.references | Chaves , M. ; Sgroppo , S.C. ; Avanza , J.R. Cinéticas de secado de berenjena (Solanum melongenaL.). Comunicaciones Científicas y Tecnológicas (Universidad Nacional del Nordeste Corrientes Argentina),2003,Resumen E-060 . | es_ES |
dc.description.references | Akpinar, E. K., & Bicer, Y. (2005). Modelling of the drying of eggplants in thin-layers. International Journal of Food Science and Technology, 40(3), 273-281. doi:10.1111/j.1365-2621.2004.00886.x | es_ES |
dc.description.references | De Lima, A. (2002). Simultaneous moisture transport and shrinkage during drying of solids with ellipsoidal configuration. Chemical Engineering Journal, 86(1-2), 85-93. doi:10.1016/s1385-8947(01)00276-5 | es_ES |
dc.description.references | RAHMAN, N., & KUMAR, S. (2007). INFLUENCE OF SAMPLE SIZE AND SHAPE ON TRANSPORT PARAMETERS DURING DRYING OF SHRINKING BODIES. Journal of Food Process Engineering, 30(2), 186-203. doi:10.1111/j.1745-4530.2007.00104.x | es_ES |