- -

Dielectric Relaxation Processes, Electronic Structure and Band Gap Engineering of MFU-4-type Metal-Organic Frameworks: Towards a Rational Design of Semiconducting Microporous Materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dielectric Relaxation Processes, Electronic Structure and Band Gap Engineering of MFU-4-type Metal-Organic Frameworks: Towards a Rational Design of Semiconducting Microporous Materials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sippel, P. es_ES
dc.contributor.author Denysenko, D. es_ES
dc.contributor.author Loidl, A. es_ES
dc.contributor.author Lunkenheimer, P. es_ES
dc.contributor.author Sastre Navarro, German Ignacio es_ES
dc.contributor.author Volkmer, Dirk es_ES
dc.date.accessioned 2016-07-27T06:57:57Z
dc.date.available 2016-07-27T06:57:57Z
dc.date.issued 2014-07-02
dc.identifier.issn 1616-301X
dc.identifier.uri http://hdl.handle.net/10251/68255
dc.description.abstract The electronic structures and band gaps of MFU-4-type metal-organic frameworks can be systematically engineered leading to a family of isostructural microporous solids. Electrical properties of the microcrystalline samples are investigated by temperature-dependent broad-band dielectric and optical spectroscopy, which are corroborated by full band structure calculations performed for framework and cluster model compounds at multiple levels of density functional theory. The combined results glean a detailed picture of relative shifts and dispersion of molecular orbitals when going from zero-dimensional clusters to three-dimensional periodic solids, thus allowing to develop guidelines for tailoring the electronic properties of this class of semiconducting microporous solids via a versatile building block approach. Thus, engineering of the band gap in MFU-4 type compounds can be achieved by adjusting the degree of conjugation of the organic ligand or by choosing an appropriate metal whose partially occupied d-orbitals generate bands below the LUMO energy of the ligand which, for example, is accomplished by octahedral Co(II) ions in Co-MFU-4. es_ES
dc.description.sponsorship Financial Support by the DFG (Priority Program SPP 1362 "Porous Metal-organic Frameworks") is gratefully acknowledged. This work was partly supported by the BMBF via ENREKON. Sastre thanks the Spanish government for the provision of the programme Severo Ochoa (project SEV 2012-0267), and SGAI-CSIC for computing time. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Advanced Functional Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Dielectric Relaxation Processes, Electronic Structure and Band Gap Engineering of MFU-4-type Metal-Organic Frameworks: Towards a Rational Design of Semiconducting Microporous Materials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/adfm.201400083
dc.relation.projectID info:eu-repo/grantAgreement/DFG//SPP 1362/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Sippel, P.; Denysenko, D.; Loidl, A.; Lunkenheimer, P.; Sastre Navarro, GI.; Volkmer, D. (2014). Dielectric Relaxation Processes, Electronic Structure and Band Gap Engineering of MFU-4-type Metal-Organic Frameworks: Towards a Rational Design of Semiconducting Microporous Materials. Advanced Functional Materials. 24(25):3885-3896. https://doi.org/10.1002/adfm.201400083 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/adfm.201400083 es_ES
dc.description.upvformatpinicio 3885 es_ES
dc.description.upvformatpfin 3896 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 25 es_ES
dc.relation.senia 278056 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder Bundesministerium für Bildung und Forschung, Alemania es_ES
dc.description.references Allendorf, M. D., Schwartzberg, A., Stavila, V., & Talin, A. A. (2011). A Roadmap to Implementing Metal-Organic Frameworks in Electronic Devices: Challenges and Critical Directions. Chemistry - A European Journal, 17(41), 11372-11388. doi:10.1002/chem.201101595 es_ES
dc.description.references Silva, C. G., Corma, A., & García, H. (2010). Metal–organic frameworks as semiconductors. Journal of Materials Chemistry, 20(16), 3141. doi:10.1039/b924937k es_ES
dc.description.references Li, S.-L., & Xu, Q. (2013). Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science, 6(6), 1656. doi:10.1039/c3ee40507a es_ES
dc.description.references Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248 es_ES
dc.description.references Civalleri, B., Napoli, F., Noël, Y., Roetti, C., & Dovesi, R. (2006). Ab-initio prediction of materials properties with CRYSTAL: MOF-5 as a case study. CrystEngComm, 8(5), 364-371. doi:10.1039/b603150c es_ES
dc.description.references Yang, L.-M., Vajeeston, P., Ravindran, P., Fjellvåg, H., & Tilset, M. (2010). Theoretical Investigations on the Chemical Bonding, Electronic Structure, And Optical Properties of the Metal−Organic Framework MOF-5. Inorganic Chemistry, 49(22), 10283-10290. doi:10.1021/ic100694w es_ES
dc.description.references Ji, M., Lan, X., Han, Z., Hao, C., & Qiu, J. (2012). Luminescent Properties of Metal–Organic Framework MOF-5: Relativistic Time-Dependent Density Functional Theory Investigations. Inorganic Chemistry, 51(22), 12389-12394. doi:10.1021/ic301771b es_ES
dc.description.references Yang, L.-M., Ravindran, P., Vajeeston, P., Svelle, S., & Tilset, M. (2013). A quantum mechanically guided view of Cd-MOF-5 from formation energy, chemical bonding, electronic structure, and optical properties. Microporous and Mesoporous Materials, 175, 50-58. doi:10.1016/j.micromeso.2013.03.020 es_ES
dc.description.references Choi, J. H., Choi, Y. J., Lee, J. W., Shin, W. H., & Kang, J. K. (2009). Tunability of electronic band gaps from semiconducting to metallic states via tailoring Zn ions in MOFs with Co ions. Phys. Chem. Chem. Phys., 11(4), 628-631. doi:10.1039/b816668d es_ES
dc.description.references Fuentes-Cabrera, M., Nicholson, D. M., Sumpter, B. G., & Widom, M. (2005). Electronic structure and properties of isoreticular metal-organic frameworks: The case of M-IRMOF1 (M=Zn, Cd, Be, Mg, and Ca). The Journal of Chemical Physics, 123(12), 124713. doi:10.1063/1.2037587 es_ES
dc.description.references Choi, J. H., Jeon, H. J., Choi, K. M., & Kang, J. K. (2012). Metal–organic frameworks for visible light absorption via anion substitution. Journal of Materials Chemistry, 22(20), 10144. doi:10.1039/c2jm16245h es_ES
dc.description.references Kuc, A., Enyashin, A., & Seifert, G. (2007). Metal−Organic Frameworks:  Structural, Energetic, Electronic, and Mechanical Properties. The Journal of Physical Chemistry B, 111(28), 8179-8186. doi:10.1021/jp072085x es_ES
dc.description.references Lin, C.-K., Zhao, D., Gao, W.-Y., Yang, Z., Ye, J., Xu, T., … Liu, D.-J. (2012). Tunability of Band Gaps in Metal–Organic Frameworks. Inorganic Chemistry, 51(16), 9039-9044. doi:10.1021/ic301189m es_ES
dc.description.references Yang, L.-M., Ravindran, P., Vajeeston, P., & Tilset, M. (2012). Ab initio investigations on the crystal structure, formation enthalpy, electronic structure, chemical bonding, and optical properties of experimentally synthesized isoreticular metal–organic framework-10 and its analogues: M-IRMOF-10 (M = Zn, Cd, Be, Mg, Ca, Sr and Ba). RSC Adv., 2(4), 1618-1631. doi:10.1039/c1ra00187f es_ES
dc.description.references Yang, L.-M., Ravindran, P., Vajeeston, P., & Tilset, M. (2012). Formation of an intermediate band in isoreticular metal–organic framework-993 (IRMOF-993) and metal-substituted analogues M-IRMOF-993. Journal of Materials Chemistry, 22(32), 16324. doi:10.1039/c2jm31360j es_ES
dc.description.references Yang, L.-M., Ravindran, P., & Tilset, M. (2013). Solid-State Structure and Calculated Electronic Structure, Formation Energy, Chemical Bonding, and Optical Properties of Zn4O(FMA)3 and Its Heavier Congener Cd4O(FMA)3. Inorganic Chemistry, 52(8), 4217-4228. doi:10.1021/ic301928a es_ES
dc.description.references Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., … Lamberti, C. (2011). Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 23(7), 1700-1718. doi:10.1021/cm1022882 es_ES
dc.description.references Takaishi, S., Hosoda, M., Kajiwara, T., Miyasaka, H., Yamashita, M., Nakanishi, Y., … Kitagawa, H. (2009). Electroconductive Porous Coordination Polymer Cu[Cu(pdt)2] Composed of Donor and Acceptor Building Units. Inorganic Chemistry, 48(19), 9048-9050. doi:10.1021/ic802117q es_ES
dc.description.references Kobayashi, Y., Jacobs, B., Allendorf, M. D., & Long, J. R. (2010). Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal−Organic Framework. Chemistry of Materials, 22(14), 4120-4122. doi:10.1021/cm101238m es_ES
dc.description.references Sun, L., Miyakai, T., Seki, S., & Dincă, M. (2013). Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): A Microporous Metal–Organic Framework with Infinite (−Mn–S−)∞ Chains and High Intrinsic Charge Mobility. Journal of the American Chemical Society, 135(22), 8185-8188. doi:10.1021/ja4037516 es_ES
dc.description.references Patwardhan, S., Kocherzhenko, A. A., Grozema, F. C., & Siebbeles, L. D. A. (2011). Delocalization and Mobility of Charge Carriers in Covalent Organic Frameworks. The Journal of Physical Chemistry C, 115(23), 11768-11772. doi:10.1021/jp202399u es_ES
dc.description.references Grozema, F. C., & Siebbeles, L. D. A. (2008). Mechanism of charge transport in self-organizing organic materials. International Reviews in Physical Chemistry, 27(1), 87-138. doi:10.1080/01442350701782776 es_ES
dc.description.references Biswas, S., Grzywa, M., Nayek, H. P., Dehnen, S., Senkovska, I., Kaskel, S., & Volkmer, D. (2009). A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties. Dalton Transactions, (33), 6487. doi:10.1039/b904280f es_ES
dc.description.references Denysenko, D., Werner, T., Grzywa, M., Puls, A., Hagen, V., Eickerling, G., … Volkmer, D. (2012). Reversible gas-phase redox processes catalyzed by Co-exchanged MFU-4l(arge). Chem. Commun., 48(9), 1236-1238. doi:10.1039/c2cc16235k es_ES
dc.description.references Denysenko, D., Grzywa, M., Tonigold, M., Streppel, B., Krkljus, I., Hirscher, M., … Volkmer, D. (2011). Elucidating Gating Effects for Hydrogen Sorption in MFU-4-Type Triazolate-Based Metal-Organic Frameworks Featuring Different Pore Sizes. Chemistry - A European Journal, 17(6), 1837-1848. doi:10.1002/chem.201001872 es_ES
dc.description.references Biswas, S., Tonigold, M., Speldrich, M., Kögerler, P., Weil, M., & Volkmer, D. (2010). Syntheses and Magnetostructural Investigations on Kuratowski-Type Homo- and Heteropentanuclear Coordination Compounds [MZn4Cl4(L)6] (MII= Zn, Fe, Co, Ni, or Cu; L = 5,6-Dimethyl-1,2,3-benzotriazolate) Represented by the NonplanarK3,3Graph. Inorganic Chemistry, 49(16), 7424-7434. doi:10.1021/ic100749k es_ES
dc.description.references Winston, E. B., Lowell, P. J., Vacek, J., Chocholoušová, J., Michl, J., & Price, J. C. (2008). Dipolar molecular rotors in the metal–organic framework crystal IRMOF-2. Physical Chemistry Chemical Physics, 10(34), 5188. doi:10.1039/b808104b es_ES
dc.description.references Devautour-Vinot, S., Maurin, G., Henn, F., Serre, C., & Férey, G. (2010). Water and ethanol desorption in the flexible metal organic frameworks, MIL-53 (Cr, Fe), investigated by complex impedance spectrocopy and density functional theory calculations. Physical Chemistry Chemical Physics, 12(39), 12478. doi:10.1039/c0cp00142b es_ES
dc.description.references Frunza, S., Schönhals, A., Frunza, L., Ganea, P., Kosslick, H., Harloff, J., & Schulz, A. (2010). Molecular Relaxation Processes in a MOF-5 Structure Revealed by Broadband Dielectric Spectroscopy: Signature of Phenylene Ring Fluctuations. The Journal of Physical Chemistry B, 114(40), 12840-12846. doi:10.1021/jp1071617 es_ES
dc.description.references Devautour-Vinot, S., Maurin, G., Serre, C., Horcajada, P., Paula da Cunha, D., Guillerm, V., … Martineau, C. (2012). Structure and Dynamics of the Functionalized MOF Type UiO-66(Zr): NMR and Dielectric Relaxation Spectroscopies Coupled with DFT Calculations. Chemistry of Materials, 24(11), 2168-2177. doi:10.1021/cm300863c es_ES
dc.description.references Zhang, W., Ye, H.-Y., Graf, R., Spiess, H. W., Yao, Y.-F., Zhu, R.-Q., & Xiong, R.-G. (2013). Tunable and Switchable Dielectric Constant in an Amphidynamic Crystal. Journal of the American Chemical Society, 135(14), 5230-5233. doi:10.1021/ja3110335 es_ES
dc.description.references Cairns, A. B., & Goodwin, A. L. (2013). Structural disorder in molecular framework materials. Chemical Society Reviews, 42(12), 4881. doi:10.1039/c3cs35524a es_ES
dc.description.references Long, A. R. (1982). Frequency-dependent loss in amorphous semiconductors. Advances in Physics, 31(5), 553-637. doi:10.1080/00018738200101418 es_ES
dc.description.references Elliott, S. R. (1987). A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Advances in Physics, 36(2), 135-217. doi:10.1080/00018738700101971 es_ES
dc.description.references ε″ν [20] ε″ T T es_ES
dc.description.references Lunkenheimer, P., Schneider, U., Brand, R., & Loid, A. (2000). Glassy dynamics. Contemporary Physics, 41(1), 15-36. doi:10.1080/001075100181259 es_ES
dc.description.references Lunkenheimer, P., Krohns, S., Riegg, S., Ebbinghaus, S. G., Reller, A., & Loidl, A. (2009). Colossal dielectric constants in transition-metal oxides. The European Physical Journal Special Topics, 180(1), 61-89. doi:10.1140/epjst/e2010-01212-5 es_ES
dc.description.references Brand, R., Lunkenheimer, P., & Loidl, A. (2002). Relaxation dynamics in plastic crystals. The Journal of Chemical Physics, 116(23), 10386-10401. doi:10.1063/1.1477186 es_ES
dc.description.references Fulcher, G. S. (1925). ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES. Journal of the American Ceramic Society, 8(6), 339-355. doi:10.1111/j.1151-2916.1925.tb16731.x es_ES
dc.description.references Tammann, G., & Hesse, W. (1926). Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie, 156(1), 245-257. doi:10.1002/zaac.19261560121 es_ES
dc.description.references Angell, C. A. (1988). Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. Journal of Non-Crystalline Solids, 102(1-3), 205-221. doi:10.1016/0022-3093(88)90133-0 es_ES
dc.description.references Ediger, M. D., Angell, C. A., & Nagel, S. R. (1996). Supercooled Liquids and Glasses. The Journal of Physical Chemistry, 100(31), 13200-13212. doi:10.1021/jp953538d es_ES
dc.description.references Debenedetti, P. G., & Stillinger, F. H. (2001). Supercooled liquids and the glass transition. Nature, 410(6825), 259-267. doi:10.1038/35065704 es_ES
dc.description.references Riniker, S., Kunz, A.-P. E., & van Gunsteren, W. F. (2011). On the Calculation of the Dielectric Permittivity and Relaxation of Molecular Models in the Liquid Phase. Journal of Chemical Theory and Computation, 7(5), 1469-1475. doi:10.1021/ct100610v es_ES
dc.description.references dc 1/4 dc T es_ES
dc.description.references Sze, S. M., & Ng, K. K. (2006). Physics of Semiconductor Devices. doi:10.1002/0470068329 es_ES
dc.description.references Tauc, J. (1970). Absorption edge and internal electric fields in amorphous semiconductors. Materials Research Bulletin, 5(8), 721-729. doi:10.1016/0025-5408(70)90112-1 es_ES
dc.description.references Wood, D. L., & Tauc, J. (1972). Weak Absorption Tails in Amorphous Semiconductors. Physical Review B, 5(8), 3144-3151. doi:10.1103/physrevb.5.3144 es_ES
dc.description.references Liu, Y.-Y., Grzywa, M., Tonigold, M., Sastre, G., Schüttrigkeit, T., Leeson, N. S., & Volkmer, D. (2011). Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII = Zn or Ru) featuring long-lived excited electronic states. Dalton Transactions, 40(22), 5926. doi:10.1039/c0dt01750g es_ES
dc.description.references Schneider, U., Lunkenheimer, P., Pimenov, A., Brand, R., & Loidl, A. (2001). Wide range dielectric spectroscopy on glass-forming materials: An experimental overview. Ferroelectrics, 249(1), 89-98. doi:10.1080/00150190108214970 es_ES
dc.description.references Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for open-shell transition metals. Physical Review B, 48(17), 13115-13118. doi:10.1103/physrevb.48.13115 es_ES
dc.description.references Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 es_ES
dc.description.references Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/physrevb.45.13244 es_ES
dc.description.references Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 es_ES
dc.description.references Seidl, A., Görling, A., Vogl, P., Majewski, J. A., & Levy, M. (1996). Generalized Kohn-Sham schemes and the band-gap problem. Physical Review B, 53(7), 3764-3774. doi:10.1103/physrevb.53.3764 es_ES
dc.description.references Brothers, E. N., Izmaylov, A. F., Normand, J. O., Barone, V., & Scuseria, G. E. (2008). Accurate solid-state band gaps via screened hybrid electronic structure calculations. The Journal of Chemical Physics, 129(1), 011102. doi:10.1063/1.2955460 es_ES
dc.description.references Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541a es_ES
dc.description.references Heyd, J., Peralta, J. E., Scuseria, G. E., & Martin, R. L. (2005). Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. The Journal of Chemical Physics, 123(17), 174101. doi:10.1063/1.2085170 es_ES
dc.description.references Tao, J., Perdew, J. P., Staroverov, V. N., & Scuseria, G. E. (2003). Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Physical Review Letters, 91(14). doi:10.1103/physrevlett.91.146401 es_ES
dc.description.references S. I. Gorelsky AOMix: Program for Molecular Orbital Analysis http://www.sg-chem.net/ 2013 es_ES
dc.description.references Gorelsky, S. I., & Lever, A. B. P. (2001). Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. Journal of Organometallic Chemistry, 635(1-2), 187-196. doi:10.1016/s0022-328x(01)01079-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem