Mostrar el registro sencillo del ítem
dc.contributor.author | Sippel, P. | es_ES |
dc.contributor.author | Denysenko, D. | es_ES |
dc.contributor.author | Loidl, A. | es_ES |
dc.contributor.author | Lunkenheimer, P. | es_ES |
dc.contributor.author | Sastre Navarro, German Ignacio | es_ES |
dc.contributor.author | Volkmer, Dirk | es_ES |
dc.date.accessioned | 2016-07-27T06:57:57Z | |
dc.date.available | 2016-07-27T06:57:57Z | |
dc.date.issued | 2014-07-02 | |
dc.identifier.issn | 1616-301X | |
dc.identifier.uri | http://hdl.handle.net/10251/68255 | |
dc.description.abstract | The electronic structures and band gaps of MFU-4-type metal-organic frameworks can be systematically engineered leading to a family of isostructural microporous solids. Electrical properties of the microcrystalline samples are investigated by temperature-dependent broad-band dielectric and optical spectroscopy, which are corroborated by full band structure calculations performed for framework and cluster model compounds at multiple levels of density functional theory. The combined results glean a detailed picture of relative shifts and dispersion of molecular orbitals when going from zero-dimensional clusters to three-dimensional periodic solids, thus allowing to develop guidelines for tailoring the electronic properties of this class of semiconducting microporous solids via a versatile building block approach. Thus, engineering of the band gap in MFU-4 type compounds can be achieved by adjusting the degree of conjugation of the organic ligand or by choosing an appropriate metal whose partially occupied d-orbitals generate bands below the LUMO energy of the ligand which, for example, is accomplished by octahedral Co(II) ions in Co-MFU-4. | es_ES |
dc.description.sponsorship | Financial Support by the DFG (Priority Program SPP 1362 "Porous Metal-organic Frameworks") is gratefully acknowledged. This work was partly supported by the BMBF via ENREKON. Sastre thanks the Spanish government for the provision of the programme Severo Ochoa (project SEV 2012-0267), and SGAI-CSIC for computing time. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Advanced Functional Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.title | Dielectric Relaxation Processes, Electronic Structure and Band Gap Engineering of MFU-4-type Metal-Organic Frameworks: Towards a Rational Design of Semiconducting Microporous Materials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/adfm.201400083 | |
dc.relation.projectID | info:eu-repo/grantAgreement/DFG//SPP 1362/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Sippel, P.; Denysenko, D.; Loidl, A.; Lunkenheimer, P.; Sastre Navarro, GI.; Volkmer, D. (2014). Dielectric Relaxation Processes, Electronic Structure and Band Gap Engineering of MFU-4-type Metal-Organic Frameworks: Towards a Rational Design of Semiconducting Microporous Materials. Advanced Functional Materials. 24(25):3885-3896. https://doi.org/10.1002/adfm.201400083 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/adfm.201400083 | es_ES |
dc.description.upvformatpinicio | 3885 | es_ES |
dc.description.upvformatpfin | 3896 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 25 | es_ES |
dc.relation.senia | 278056 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | es_ES |
dc.contributor.funder | Bundesministerium für Bildung und Forschung, Alemania | es_ES |
dc.description.references | Allendorf, M. D., Schwartzberg, A., Stavila, V., & Talin, A. A. (2011). A Roadmap to Implementing Metal-Organic Frameworks in Electronic Devices: Challenges and Critical Directions. Chemistry - A European Journal, 17(41), 11372-11388. doi:10.1002/chem.201101595 | es_ES |
dc.description.references | Silva, C. G., Corma, A., & García, H. (2010). Metal–organic frameworks as semiconductors. Journal of Materials Chemistry, 20(16), 3141. doi:10.1039/b924937k | es_ES |
dc.description.references | Li, S.-L., & Xu, Q. (2013). Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science, 6(6), 1656. doi:10.1039/c3ee40507a | es_ES |
dc.description.references | Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248 | es_ES |
dc.description.references | Civalleri, B., Napoli, F., Noël, Y., Roetti, C., & Dovesi, R. (2006). Ab-initio prediction of materials properties with CRYSTAL: MOF-5 as a case study. CrystEngComm, 8(5), 364-371. doi:10.1039/b603150c | es_ES |
dc.description.references | Yang, L.-M., Vajeeston, P., Ravindran, P., Fjellvåg, H., & Tilset, M. (2010). Theoretical Investigations on the Chemical Bonding, Electronic Structure, And Optical Properties of the Metal−Organic Framework MOF-5. Inorganic Chemistry, 49(22), 10283-10290. doi:10.1021/ic100694w | es_ES |
dc.description.references | Ji, M., Lan, X., Han, Z., Hao, C., & Qiu, J. (2012). Luminescent Properties of Metal–Organic Framework MOF-5: Relativistic Time-Dependent Density Functional Theory Investigations. Inorganic Chemistry, 51(22), 12389-12394. doi:10.1021/ic301771b | es_ES |
dc.description.references | Yang, L.-M., Ravindran, P., Vajeeston, P., Svelle, S., & Tilset, M. (2013). A quantum mechanically guided view of Cd-MOF-5 from formation energy, chemical bonding, electronic structure, and optical properties. Microporous and Mesoporous Materials, 175, 50-58. doi:10.1016/j.micromeso.2013.03.020 | es_ES |
dc.description.references | Choi, J. H., Choi, Y. J., Lee, J. W., Shin, W. H., & Kang, J. K. (2009). Tunability of electronic band gaps from semiconducting to metallic states via tailoring Zn ions in MOFs with Co ions. Phys. Chem. Chem. Phys., 11(4), 628-631. doi:10.1039/b816668d | es_ES |
dc.description.references | Fuentes-Cabrera, M., Nicholson, D. M., Sumpter, B. G., & Widom, M. (2005). Electronic structure and properties of isoreticular metal-organic frameworks: The case of M-IRMOF1 (M=Zn, Cd, Be, Mg, and Ca). The Journal of Chemical Physics, 123(12), 124713. doi:10.1063/1.2037587 | es_ES |
dc.description.references | Choi, J. H., Jeon, H. J., Choi, K. M., & Kang, J. K. (2012). Metal–organic frameworks for visible light absorption via anion substitution. Journal of Materials Chemistry, 22(20), 10144. doi:10.1039/c2jm16245h | es_ES |
dc.description.references | Kuc, A., Enyashin, A., & Seifert, G. (2007). Metal−Organic Frameworks: Structural, Energetic, Electronic, and Mechanical Properties. The Journal of Physical Chemistry B, 111(28), 8179-8186. doi:10.1021/jp072085x | es_ES |
dc.description.references | Lin, C.-K., Zhao, D., Gao, W.-Y., Yang, Z., Ye, J., Xu, T., … Liu, D.-J. (2012). Tunability of Band Gaps in Metal–Organic Frameworks. Inorganic Chemistry, 51(16), 9039-9044. doi:10.1021/ic301189m | es_ES |
dc.description.references | Yang, L.-M., Ravindran, P., Vajeeston, P., & Tilset, M. (2012). Ab initio investigations on the crystal structure, formation enthalpy, electronic structure, chemical bonding, and optical properties of experimentally synthesized isoreticular metal–organic framework-10 and its analogues: M-IRMOF-10 (M = Zn, Cd, Be, Mg, Ca, Sr and Ba). RSC Adv., 2(4), 1618-1631. doi:10.1039/c1ra00187f | es_ES |
dc.description.references | Yang, L.-M., Ravindran, P., Vajeeston, P., & Tilset, M. (2012). Formation of an intermediate band in isoreticular metal–organic framework-993 (IRMOF-993) and metal-substituted analogues M-IRMOF-993. Journal of Materials Chemistry, 22(32), 16324. doi:10.1039/c2jm31360j | es_ES |
dc.description.references | Yang, L.-M., Ravindran, P., & Tilset, M. (2013). Solid-State Structure and Calculated Electronic Structure, Formation Energy, Chemical Bonding, and Optical Properties of Zn4O(FMA)3 and Its Heavier Congener Cd4O(FMA)3. Inorganic Chemistry, 52(8), 4217-4228. doi:10.1021/ic301928a | es_ES |
dc.description.references | Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., … Lamberti, C. (2011). Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 23(7), 1700-1718. doi:10.1021/cm1022882 | es_ES |
dc.description.references | Takaishi, S., Hosoda, M., Kajiwara, T., Miyasaka, H., Yamashita, M., Nakanishi, Y., … Kitagawa, H. (2009). Electroconductive Porous Coordination Polymer Cu[Cu(pdt)2] Composed of Donor and Acceptor Building Units. Inorganic Chemistry, 48(19), 9048-9050. doi:10.1021/ic802117q | es_ES |
dc.description.references | Kobayashi, Y., Jacobs, B., Allendorf, M. D., & Long, J. R. (2010). Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal−Organic Framework. Chemistry of Materials, 22(14), 4120-4122. doi:10.1021/cm101238m | es_ES |
dc.description.references | Sun, L., Miyakai, T., Seki, S., & Dincă, M. (2013). Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): A Microporous Metal–Organic Framework with Infinite (−Mn–S−)∞ Chains and High Intrinsic Charge Mobility. Journal of the American Chemical Society, 135(22), 8185-8188. doi:10.1021/ja4037516 | es_ES |
dc.description.references | Patwardhan, S., Kocherzhenko, A. A., Grozema, F. C., & Siebbeles, L. D. A. (2011). Delocalization and Mobility of Charge Carriers in Covalent Organic Frameworks. The Journal of Physical Chemistry C, 115(23), 11768-11772. doi:10.1021/jp202399u | es_ES |
dc.description.references | Grozema, F. C., & Siebbeles, L. D. A. (2008). Mechanism of charge transport in self-organizing organic materials. International Reviews in Physical Chemistry, 27(1), 87-138. doi:10.1080/01442350701782776 | es_ES |
dc.description.references | Biswas, S., Grzywa, M., Nayek, H. P., Dehnen, S., Senkovska, I., Kaskel, S., & Volkmer, D. (2009). A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties. Dalton Transactions, (33), 6487. doi:10.1039/b904280f | es_ES |
dc.description.references | Denysenko, D., Werner, T., Grzywa, M., Puls, A., Hagen, V., Eickerling, G., … Volkmer, D. (2012). Reversible gas-phase redox processes catalyzed by Co-exchanged MFU-4l(arge). Chem. Commun., 48(9), 1236-1238. doi:10.1039/c2cc16235k | es_ES |
dc.description.references | Denysenko, D., Grzywa, M., Tonigold, M., Streppel, B., Krkljus, I., Hirscher, M., … Volkmer, D. (2011). Elucidating Gating Effects for Hydrogen Sorption in MFU-4-Type Triazolate-Based Metal-Organic Frameworks Featuring Different Pore Sizes. Chemistry - A European Journal, 17(6), 1837-1848. doi:10.1002/chem.201001872 | es_ES |
dc.description.references | Biswas, S., Tonigold, M., Speldrich, M., Kögerler, P., Weil, M., & Volkmer, D. (2010). Syntheses and Magnetostructural Investigations on Kuratowski-Type Homo- and Heteropentanuclear Coordination Compounds [MZn4Cl4(L)6] (MII= Zn, Fe, Co, Ni, or Cu; L = 5,6-Dimethyl-1,2,3-benzotriazolate) Represented by the NonplanarK3,3Graph. Inorganic Chemistry, 49(16), 7424-7434. doi:10.1021/ic100749k | es_ES |
dc.description.references | Winston, E. B., Lowell, P. J., Vacek, J., Chocholoušová, J., Michl, J., & Price, J. C. (2008). Dipolar molecular rotors in the metal–organic framework crystal IRMOF-2. Physical Chemistry Chemical Physics, 10(34), 5188. doi:10.1039/b808104b | es_ES |
dc.description.references | Devautour-Vinot, S., Maurin, G., Henn, F., Serre, C., & Férey, G. (2010). Water and ethanol desorption in the flexible metal organic frameworks, MIL-53 (Cr, Fe), investigated by complex impedance spectrocopy and density functional theory calculations. Physical Chemistry Chemical Physics, 12(39), 12478. doi:10.1039/c0cp00142b | es_ES |
dc.description.references | Frunza, S., Schönhals, A., Frunza, L., Ganea, P., Kosslick, H., Harloff, J., & Schulz, A. (2010). Molecular Relaxation Processes in a MOF-5 Structure Revealed by Broadband Dielectric Spectroscopy: Signature of Phenylene Ring Fluctuations. The Journal of Physical Chemistry B, 114(40), 12840-12846. doi:10.1021/jp1071617 | es_ES |
dc.description.references | Devautour-Vinot, S., Maurin, G., Serre, C., Horcajada, P., Paula da Cunha, D., Guillerm, V., … Martineau, C. (2012). Structure and Dynamics of the Functionalized MOF Type UiO-66(Zr): NMR and Dielectric Relaxation Spectroscopies Coupled with DFT Calculations. Chemistry of Materials, 24(11), 2168-2177. doi:10.1021/cm300863c | es_ES |
dc.description.references | Zhang, W., Ye, H.-Y., Graf, R., Spiess, H. W., Yao, Y.-F., Zhu, R.-Q., & Xiong, R.-G. (2013). Tunable and Switchable Dielectric Constant in an Amphidynamic Crystal. Journal of the American Chemical Society, 135(14), 5230-5233. doi:10.1021/ja3110335 | es_ES |
dc.description.references | Cairns, A. B., & Goodwin, A. L. (2013). Structural disorder in molecular framework materials. Chemical Society Reviews, 42(12), 4881. doi:10.1039/c3cs35524a | es_ES |
dc.description.references | Long, A. R. (1982). Frequency-dependent loss in amorphous semiconductors. Advances in Physics, 31(5), 553-637. doi:10.1080/00018738200101418 | es_ES |
dc.description.references | Elliott, S. R. (1987). A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Advances in Physics, 36(2), 135-217. doi:10.1080/00018738700101971 | es_ES |
dc.description.references | ε″ν [20] ε″ T T | es_ES |
dc.description.references | Lunkenheimer, P., Schneider, U., Brand, R., & Loid, A. (2000). Glassy dynamics. Contemporary Physics, 41(1), 15-36. doi:10.1080/001075100181259 | es_ES |
dc.description.references | Lunkenheimer, P., Krohns, S., Riegg, S., Ebbinghaus, S. G., Reller, A., & Loidl, A. (2009). Colossal dielectric constants in transition-metal oxides. The European Physical Journal Special Topics, 180(1), 61-89. doi:10.1140/epjst/e2010-01212-5 | es_ES |
dc.description.references | Brand, R., Lunkenheimer, P., & Loidl, A. (2002). Relaxation dynamics in plastic crystals. The Journal of Chemical Physics, 116(23), 10386-10401. doi:10.1063/1.1477186 | es_ES |
dc.description.references | Fulcher, G. S. (1925). ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES. Journal of the American Ceramic Society, 8(6), 339-355. doi:10.1111/j.1151-2916.1925.tb16731.x | es_ES |
dc.description.references | Tammann, G., & Hesse, W. (1926). Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie, 156(1), 245-257. doi:10.1002/zaac.19261560121 | es_ES |
dc.description.references | Angell, C. A. (1988). Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. Journal of Non-Crystalline Solids, 102(1-3), 205-221. doi:10.1016/0022-3093(88)90133-0 | es_ES |
dc.description.references | Ediger, M. D., Angell, C. A., & Nagel, S. R. (1996). Supercooled Liquids and Glasses. The Journal of Physical Chemistry, 100(31), 13200-13212. doi:10.1021/jp953538d | es_ES |
dc.description.references | Debenedetti, P. G., & Stillinger, F. H. (2001). Supercooled liquids and the glass transition. Nature, 410(6825), 259-267. doi:10.1038/35065704 | es_ES |
dc.description.references | Riniker, S., Kunz, A.-P. E., & van Gunsteren, W. F. (2011). On the Calculation of the Dielectric Permittivity and Relaxation of Molecular Models in the Liquid Phase. Journal of Chemical Theory and Computation, 7(5), 1469-1475. doi:10.1021/ct100610v | es_ES |
dc.description.references | dc 1/4 dc T | es_ES |
dc.description.references | Sze, S. M., & Ng, K. K. (2006). Physics of Semiconductor Devices. doi:10.1002/0470068329 | es_ES |
dc.description.references | Tauc, J. (1970). Absorption edge and internal electric fields in amorphous semiconductors. Materials Research Bulletin, 5(8), 721-729. doi:10.1016/0025-5408(70)90112-1 | es_ES |
dc.description.references | Wood, D. L., & Tauc, J. (1972). Weak Absorption Tails in Amorphous Semiconductors. Physical Review B, 5(8), 3144-3151. doi:10.1103/physrevb.5.3144 | es_ES |
dc.description.references | Liu, Y.-Y., Grzywa, M., Tonigold, M., Sastre, G., Schüttrigkeit, T., Leeson, N. S., & Volkmer, D. (2011). Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII = Zn or Ru) featuring long-lived excited electronic states. Dalton Transactions, 40(22), 5926. doi:10.1039/c0dt01750g | es_ES |
dc.description.references | Schneider, U., Lunkenheimer, P., Pimenov, A., Brand, R., & Loidl, A. (2001). Wide range dielectric spectroscopy on glass-forming materials: An experimental overview. Ferroelectrics, 249(1), 89-98. doi:10.1080/00150190108214970 | es_ES |
dc.description.references | Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for open-shell transition metals. Physical Review B, 48(17), 13115-13118. doi:10.1103/physrevb.48.13115 | es_ES |
dc.description.references | Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 | es_ES |
dc.description.references | Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/physrevb.45.13244 | es_ES |
dc.description.references | Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 | es_ES |
dc.description.references | Seidl, A., Görling, A., Vogl, P., Majewski, J. A., & Levy, M. (1996). Generalized Kohn-Sham schemes and the band-gap problem. Physical Review B, 53(7), 3764-3774. doi:10.1103/physrevb.53.3764 | es_ES |
dc.description.references | Brothers, E. N., Izmaylov, A. F., Normand, J. O., Barone, V., & Scuseria, G. E. (2008). Accurate solid-state band gaps via screened hybrid electronic structure calculations. The Journal of Chemical Physics, 129(1), 011102. doi:10.1063/1.2955460 | es_ES |
dc.description.references | Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541a | es_ES |
dc.description.references | Heyd, J., Peralta, J. E., Scuseria, G. E., & Martin, R. L. (2005). Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. The Journal of Chemical Physics, 123(17), 174101. doi:10.1063/1.2085170 | es_ES |
dc.description.references | Tao, J., Perdew, J. P., Staroverov, V. N., & Scuseria, G. E. (2003). Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Physical Review Letters, 91(14). doi:10.1103/physrevlett.91.146401 | es_ES |
dc.description.references | S. I. Gorelsky AOMix: Program for Molecular Orbital Analysis http://www.sg-chem.net/ 2013 | es_ES |
dc.description.references | Gorelsky, S. I., & Lever, A. B. P. (2001). Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. Journal of Organometallic Chemistry, 635(1-2), 187-196. doi:10.1016/s0022-328x(01)01079-8 | es_ES |