- -

Reference evapotranspiration estimation without local climatic data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reference evapotranspiration estimation without local climatic data

Mostrar el registro completo del ítem

Martí Pérez, PC.; González Altozano, P.; Gasque Albalate, M. (2011). Reference evapotranspiration estimation without local climatic data. Irrigation Science. 29(6):479-495. doi:10.1007/s00271-010-0243-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68260

Ficheros en el ítem

Metadatos del ítem

Título: Reference evapotranspiration estimation without local climatic data
Autor: Martí Pérez, Pau Carles González Altozano, Pablo Gasque Albalate, Maria
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] The Penman-Monteith equation for reference evapotranspiration (ET o) estimation cannot be applied in many situations, because climatic records are totally or partially not available or reliable. In these cases, empirical ...[+]
Palabras clave: Ancillary data , Artificial Neural Network , Climatic data , Climatic variables , Empirical equations , Empirical model , Hierarchization , Infilling , Local temperature , Local temperature measurements , Multiple linear regression approaches , Multiple linear regressions , Penman-Monteith equations , Reference evapotranspiration , Temperature-based approaches , Evapotranspiration , Linear regression , Neural networks , Temperature measurement , Water supply , Estimation , Accuracy assessment , Climate change , Data set , Estimation method , Hierarchical system , Penman-Monteith equation , Regression analysis , Temperature profile , Uncertainty analysis
Derechos de uso: Cerrado
Fuente:
Irrigation Science. (issn: 0342-7188 )
DOI: 10.1007/s00271-010-0243-3
Editorial:
Springer Verlag (Germany)
Versión del editor: https://dx.doi.org/10.1007/s00271-010-0243-3
Tipo: Artículo

References

Abudu S, Bawazir AS, King JP (2010) Infilling missing daily evapotranspiration data using neural networks. J Irrig Drain Eng. doi: 10.1061/(ASCE)IR.1943-4774.0000197

Alavi N, Warland JS, Berg AA (2006) Filling gaps in evapotranspiration measurements for water budget studies: evaluation of a Kalman filtering approach. Agric For Meteorol 141(1):57–66

Al-Ghobari HM (2000) Estimation of reference evapotranspiration for southern region of Saudi Arabia. Irrig Sci 19(2):81–86 [+]
Abudu S, Bawazir AS, King JP (2010) Infilling missing daily evapotranspiration data using neural networks. J Irrig Drain Eng. doi: 10.1061/(ASCE)IR.1943-4774.0000197

Alavi N, Warland JS, Berg AA (2006) Filling gaps in evapotranspiration measurements for water budget studies: evaluation of a Kalman filtering approach. Agric For Meteorol 141(1):57–66

Al-Ghobari HM (2000) Estimation of reference evapotranspiration for southern region of Saudi Arabia. Irrig Sci 19(2):81–86

Allen RG (1996) Assessing integrity of weather data for reference evapotranspiration estimation. J Irrig Drain Eng 122(2):97–106

Allen RG, Smith M, Perrier A, Pereira LS (1994) An update for the calculation of reference evapotranspiration. ICID Bull 43(2):35–92

Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing water requirements. FAO Irrigation and Drainage, paper 56. FAO, Rome

ASCE Task Committee (2000) Artificial neural networks in hydrology. II: Hydrological applications. J Hydrol Eng ASCE 5(2):124–137

Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

Doorenbos J, Pruitt WO (1977) Crop water requirements. FAO irrigation and drainage paper 56. FAO, Rome

Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen N, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001a) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107(1):43–69

Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen N, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001b) Gap filling strategies for long term energy flux data sets. Agric For Meteorol 107(1):71–77

Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt Algorithm. IEEE Trans Neural Netw 5(6):989–993

Hagan MT, Delmuth H, Beale M (1996) Neural network design. PWS Publishing Company, Boston

Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from ambient air temperature. Appl Eng Agric 1(2):96–99

Haykin S (1999) Neural networks. A comprehensive foundation. Prentice Hall International Inc., New Jersey

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366

Hui D, Wan S, Su B, Katul G, Monson R, Luo Y (2004) Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations. Agric For Meteorol 121(1–2):93–111

Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE manuals and reports on engineering practices 70. American Society of Civil Engineers, New York

Jensen DT, Hargreaves GH, Temesgen B, Allen RG (1997) Computation of ETo under nonideal conditions. J Irrig Drain Eng 123(5):394–400

Khalil M, Panu US, Lennox WC (2001) groups and neural networks based streamflow data infilling procedures. J Hydrol 241(3–4):153–176

Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351(3–4):299–317

Kişi Ö (2006a) Evapotranspiration estimation using feed-forward neural networks. Nord Hydrol 37(3):247–260

Kişi Ö (2006b) Generalized regression neural networks for evapotranspiration modelling. Hydrol Sci J 51(6):1092–1105

Kişi Ö (2007) Evapotranspiration modelling from climatic data using a neural network computing technique. Hydrol Process 21:1925–1934

Kişi Ö (2008) The potential of different ANN techniques in evapotranspiration modelling. Hydrol Process 22:1449–2460

Kişi Ö (2009) Modelling monthly evaporation using two different neural computing techniques. Irrig Sci 27(5):417–430

Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural network. J Irrig Drain Eng 128(4):224–233

Kumar M, Bandyopadhyay A, Raghuwanshi NS, Singh R (2008) Comparative study of conventional and artificial neural network-based ETo estimation models. Irrig Sci 26(6):531–545

Landeras G, Ortiz-Barredo A, López JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric Water Manag 95(5):553–565

Landeras G, Ortiz-Barredo A, López JJ (2009) Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J Irrig Drain Eng 135(3):323–334

Llasat MC, Snyder RL (1998) Data error effects on net radiation and evapotranspiration estimation. Agric For Meteorol 91(3–4):209–221

Marquardt D (1963) An algorithm for least-squares estimations of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

Martí P, Gasque M (2010) Ancillary data supply strategies for improvement of temperature-based ETo ANN models. Agric Water Manag 97(7):939–955

Martí P, Gasque M, Royuela A (2010a) Discussion of ‘forecasting weekly evapotranspiration with ARIMA and artificial neural network models’. J Irrig Drain Eng 136(6):440–444

Martí P, Royuela A, Manzano J, Palau G (2010b) Generalization of ETo ANN models through data supplanting. J Irrig Drain Eng 136(3):161–174

Martí P, Royuela A, Manzano J (2010c) Assessment of a 4-input artificial neural network for ETo estimation model through data set scanning procedures. Irrig Sci. doi: 10.1007/s00271-010-0224-6

Martínez-Cob A (1996) Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain. J Hydrol 174(1–2):19–35

Matlab (2007) Users’ manual version 7.4.0 R2007a. The MathWorks Inc., Natick

Prechelt L (1998) Automatic early stopping using cross validation: quantifying criteria. Neural Netw 11(4):761–767

Rahimi A (2008a) Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26(3):253–259

Rahimi A (2008b) Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semiarid environment. Irrig Sci 27(1):35–39

Sarle WS (1995) Stopped training and other remedies for overfitting. In: Proceedings of the 27th symposium on the interface of computing science statistics, Pittsburgh, pp 352–360

Sharma ML (1985) Estimating evapotranspiration. In: Hillel D (ed) Advances in irrigation, vol 3. Academic Press, London

Stöckle CO, Kjelgaard J, Bellochi G (2004) Evaluation of estimated weather data for calculating Penman-Monteith reference crop evapotranspiration. Irrig Sci 23:39–46

Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129(3):214–218

Temesgen B, Eching S, Davidoff B, Frame K (2005) Comparison of some reference evapotranspiration equations for California. J Irrig Drain Eng 131(1):73–84

Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrig Drain Eng 131(4):316–323

Trajkovic S, Kolakovic S (2009) Estimating reference evapotranspiration using limited weather data. J Irrig Drain Eng 135(4):443–449

Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting of reference evapotranspiration by artificial neural networks. J Irrig Drain Eng 129(6):454–457

Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2):83–89

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem