- -

Reference evapotranspiration estimation without local climatic data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reference evapotranspiration estimation without local climatic data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martí Pérez, Pau Carles es_ES
dc.contributor.author González Altozano, Pablo es_ES
dc.contributor.author Gasque Albalate, Maria es_ES
dc.date.accessioned 2016-07-27T07:32:51Z
dc.date.available 2016-07-27T07:32:51Z
dc.date.issued 2011-11
dc.identifier.issn 0342-7188
dc.identifier.uri http://hdl.handle.net/10251/68260
dc.description.abstract [EN] The Penman-Monteith equation for reference evapotranspiration (ET o) estimation cannot be applied in many situations, because climatic records are totally or partially not available or reliable. In these cases, empirical equations that rely on few climatic variables are necessary. Nevertheless, the uncertainty associated with empirical model estimations is often high. Thus, the improvement of methods relying on few climatic inputs as well as the development of emergency estimation tools that demand no local climatic records turns into a task of great relevance. The present study describes different approaches based on multiple linear regression, simple regression and artificial neural networks (ANNs) to deal with ET o estimation exclusively from exogenous records from secondary stations. This cross-station approach is based on a continental characterization of the study region, which enables the selection and hierarchization of the most suitable ancillary data supplier stations. This procedure is compared with different traditional and cross-station approaches, including methodologies that also consider local temperature inputs. The proposed methods are also evaluated as gap infilling procedures and compared with a simple methodology, the window averaging. The artificial neural network and the multiple linear regression approaches present very similar performance accuracies, considerably higher than simple regression and traditional temperature-based approaches. The proposed input combinations allow similar performance accuracies as ANN models relying on exogenous ET o records and local temperature measurements. The cross-station multiple linear regression procedure is recommended due to its higher simplicity. © 2010 Springer-Verlag. es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Irrigation Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ancillary data es_ES
dc.subject Artificial Neural Network es_ES
dc.subject Climatic data es_ES
dc.subject Climatic variables es_ES
dc.subject Empirical equations es_ES
dc.subject Empirical model es_ES
dc.subject Hierarchization es_ES
dc.subject Infilling es_ES
dc.subject Local temperature es_ES
dc.subject Local temperature measurements es_ES
dc.subject Multiple linear regression approaches es_ES
dc.subject Multiple linear regressions es_ES
dc.subject Penman-Monteith equations es_ES
dc.subject Reference evapotranspiration es_ES
dc.subject Temperature-based approaches es_ES
dc.subject Evapotranspiration es_ES
dc.subject Linear regression es_ES
dc.subject Neural networks es_ES
dc.subject Temperature measurement es_ES
dc.subject Water supply es_ES
dc.subject Estimation es_ES
dc.subject Accuracy assessment es_ES
dc.subject Climate change es_ES
dc.subject Data set es_ES
dc.subject Estimation method es_ES
dc.subject Hierarchical system es_ES
dc.subject Penman-Monteith equation es_ES
dc.subject Regression analysis es_ES
dc.subject Temperature profile es_ES
dc.subject Uncertainty analysis es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Reference evapotranspiration estimation without local climatic data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00271-010-0243-3
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Martí Pérez, PC.; González Altozano, P.; Gasque Albalate, M. (2011). Reference evapotranspiration estimation without local climatic data. Irrigation Science. 29(6):479-495. doi:10.1007/s00271-010-0243-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s00271-010-0243-3 es_ES
dc.description.upvformatpinicio 479 es_ES
dc.description.upvformatpfin 495 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 221877 es_ES
dc.description.references Abudu S, Bawazir AS, King JP (2010) Infilling missing daily evapotranspiration data using neural networks. J Irrig Drain Eng. doi: 10.1061/(ASCE)IR.1943-4774.0000197 es_ES
dc.description.references Alavi N, Warland JS, Berg AA (2006) Filling gaps in evapotranspiration measurements for water budget studies: evaluation of a Kalman filtering approach. Agric For Meteorol 141(1):57–66 es_ES
dc.description.references Al-Ghobari HM (2000) Estimation of reference evapotranspiration for southern region of Saudi Arabia. Irrig Sci 19(2):81–86 es_ES
dc.description.references Allen RG (1996) Assessing integrity of weather data for reference evapotranspiration estimation. J Irrig Drain Eng 122(2):97–106 es_ES
dc.description.references Allen RG, Smith M, Perrier A, Pereira LS (1994) An update for the calculation of reference evapotranspiration. ICID Bull 43(2):35–92 es_ES
dc.description.references Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing water requirements. FAO Irrigation and Drainage, paper 56. FAO, Rome es_ES
dc.description.references ASCE Task Committee (2000) Artificial neural networks in hydrology. II: Hydrological applications. J Hydrol Eng ASCE 5(2):124–137 es_ES
dc.description.references Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford es_ES
dc.description.references Doorenbos J, Pruitt WO (1977) Crop water requirements. FAO irrigation and drainage paper 56. FAO, Rome es_ES
dc.description.references Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen N, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001a) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107(1):43–69 es_ES
dc.description.references Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen N, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001b) Gap filling strategies for long term energy flux data sets. Agric For Meteorol 107(1):71–77 es_ES
dc.description.references Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt Algorithm. IEEE Trans Neural Netw 5(6):989–993 es_ES
dc.description.references Hagan MT, Delmuth H, Beale M (1996) Neural network design. PWS Publishing Company, Boston es_ES
dc.description.references Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from ambient air temperature. Appl Eng Agric 1(2):96–99 es_ES
dc.description.references Haykin S (1999) Neural networks. A comprehensive foundation. Prentice Hall International Inc., New Jersey es_ES
dc.description.references Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366 es_ES
dc.description.references Hui D, Wan S, Su B, Katul G, Monson R, Luo Y (2004) Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations. Agric For Meteorol 121(1–2):93–111 es_ES
dc.description.references Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE manuals and reports on engineering practices 70. American Society of Civil Engineers, New York es_ES
dc.description.references Jensen DT, Hargreaves GH, Temesgen B, Allen RG (1997) Computation of ETo under nonideal conditions. J Irrig Drain Eng 123(5):394–400 es_ES
dc.description.references Khalil M, Panu US, Lennox WC (2001) groups and neural networks based streamflow data infilling procedures. J Hydrol 241(3–4):153–176 es_ES
dc.description.references Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351(3–4):299–317 es_ES
dc.description.references Kişi Ö (2006a) Evapotranspiration estimation using feed-forward neural networks. Nord Hydrol 37(3):247–260 es_ES
dc.description.references Kişi Ö (2006b) Generalized regression neural networks for evapotranspiration modelling. Hydrol Sci J 51(6):1092–1105 es_ES
dc.description.references Kişi Ö (2007) Evapotranspiration modelling from climatic data using a neural network computing technique. Hydrol Process 21:1925–1934 es_ES
dc.description.references Kişi Ö (2008) The potential of different ANN techniques in evapotranspiration modelling. Hydrol Process 22:1449–2460 es_ES
dc.description.references Kişi Ö (2009) Modelling monthly evaporation using two different neural computing techniques. Irrig Sci 27(5):417–430 es_ES
dc.description.references Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural network. J Irrig Drain Eng 128(4):224–233 es_ES
dc.description.references Kumar M, Bandyopadhyay A, Raghuwanshi NS, Singh R (2008) Comparative study of conventional and artificial neural network-based ETo estimation models. Irrig Sci 26(6):531–545 es_ES
dc.description.references Landeras G, Ortiz-Barredo A, López JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric Water Manag 95(5):553–565 es_ES
dc.description.references Landeras G, Ortiz-Barredo A, López JJ (2009) Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J Irrig Drain Eng 135(3):323–334 es_ES
dc.description.references Llasat MC, Snyder RL (1998) Data error effects on net radiation and evapotranspiration estimation. Agric For Meteorol 91(3–4):209–221 es_ES
dc.description.references Marquardt D (1963) An algorithm for least-squares estimations of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441 es_ES
dc.description.references Martí P, Gasque M (2010) Ancillary data supply strategies for improvement of temperature-based ETo ANN models. Agric Water Manag 97(7):939–955 es_ES
dc.description.references Martí P, Gasque M, Royuela A (2010a) Discussion of ‘forecasting weekly evapotranspiration with ARIMA and artificial neural network models’. J Irrig Drain Eng 136(6):440–444 es_ES
dc.description.references Martí P, Royuela A, Manzano J, Palau G (2010b) Generalization of ETo ANN models through data supplanting. J Irrig Drain Eng 136(3):161–174 es_ES
dc.description.references Martí P, Royuela A, Manzano J (2010c) Assessment of a 4-input artificial neural network for ETo estimation model through data set scanning procedures. Irrig Sci. doi: 10.1007/s00271-010-0224-6 es_ES
dc.description.references Martínez-Cob A (1996) Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain. J Hydrol 174(1–2):19–35 es_ES
dc.description.references Matlab (2007) Users’ manual version 7.4.0 R2007a. The MathWorks Inc., Natick es_ES
dc.description.references Prechelt L (1998) Automatic early stopping using cross validation: quantifying criteria. Neural Netw 11(4):761–767 es_ES
dc.description.references Rahimi A (2008a) Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26(3):253–259 es_ES
dc.description.references Rahimi A (2008b) Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semiarid environment. Irrig Sci 27(1):35–39 es_ES
dc.description.references Sarle WS (1995) Stopped training and other remedies for overfitting. In: Proceedings of the 27th symposium on the interface of computing science statistics, Pittsburgh, pp 352–360 es_ES
dc.description.references Sharma ML (1985) Estimating evapotranspiration. In: Hillel D (ed) Advances in irrigation, vol 3. Academic Press, London es_ES
dc.description.references Stöckle CO, Kjelgaard J, Bellochi G (2004) Evaluation of estimated weather data for calculating Penman-Monteith reference crop evapotranspiration. Irrig Sci 23:39–46 es_ES
dc.description.references Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129(3):214–218 es_ES
dc.description.references Temesgen B, Eching S, Davidoff B, Frame K (2005) Comparison of some reference evapotranspiration equations for California. J Irrig Drain Eng 131(1):73–84 es_ES
dc.description.references Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrig Drain Eng 131(4):316–323 es_ES
dc.description.references Trajkovic S, Kolakovic S (2009) Estimating reference evapotranspiration using limited weather data. J Irrig Drain Eng 135(4):443–449 es_ES
dc.description.references Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting of reference evapotranspiration by artificial neural networks. J Irrig Drain Eng 129(6):454–457 es_ES
dc.description.references Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2):83–89 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem