Mostrar el registro sencillo del ítem
dc.contributor.author | Martí Pérez, Pau Carles | es_ES |
dc.contributor.author | González Altozano, Pablo | es_ES |
dc.contributor.author | Gasque Albalate, Maria | es_ES |
dc.date.accessioned | 2016-07-27T07:32:51Z | |
dc.date.available | 2016-07-27T07:32:51Z | |
dc.date.issued | 2011-11 | |
dc.identifier.issn | 0342-7188 | |
dc.identifier.uri | http://hdl.handle.net/10251/68260 | |
dc.description.abstract | [EN] The Penman-Monteith equation for reference evapotranspiration (ET o) estimation cannot be applied in many situations, because climatic records are totally or partially not available or reliable. In these cases, empirical equations that rely on few climatic variables are necessary. Nevertheless, the uncertainty associated with empirical model estimations is often high. Thus, the improvement of methods relying on few climatic inputs as well as the development of emergency estimation tools that demand no local climatic records turns into a task of great relevance. The present study describes different approaches based on multiple linear regression, simple regression and artificial neural networks (ANNs) to deal with ET o estimation exclusively from exogenous records from secondary stations. This cross-station approach is based on a continental characterization of the study region, which enables the selection and hierarchization of the most suitable ancillary data supplier stations. This procedure is compared with different traditional and cross-station approaches, including methodologies that also consider local temperature inputs. The proposed methods are also evaluated as gap infilling procedures and compared with a simple methodology, the window averaging. The artificial neural network and the multiple linear regression approaches present very similar performance accuracies, considerably higher than simple regression and traditional temperature-based approaches. The proposed input combinations allow similar performance accuracies as ANN models relying on exogenous ET o records and local temperature measurements. The cross-station multiple linear regression procedure is recommended due to its higher simplicity. © 2010 Springer-Verlag. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Irrigation Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ancillary data | es_ES |
dc.subject | Artificial Neural Network | es_ES |
dc.subject | Climatic data | es_ES |
dc.subject | Climatic variables | es_ES |
dc.subject | Empirical equations | es_ES |
dc.subject | Empirical model | es_ES |
dc.subject | Hierarchization | es_ES |
dc.subject | Infilling | es_ES |
dc.subject | Local temperature | es_ES |
dc.subject | Local temperature measurements | es_ES |
dc.subject | Multiple linear regression approaches | es_ES |
dc.subject | Multiple linear regressions | es_ES |
dc.subject | Penman-Monteith equations | es_ES |
dc.subject | Reference evapotranspiration | es_ES |
dc.subject | Temperature-based approaches | es_ES |
dc.subject | Evapotranspiration | es_ES |
dc.subject | Linear regression | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject | Temperature measurement | es_ES |
dc.subject | Water supply | es_ES |
dc.subject | Estimation | es_ES |
dc.subject | Accuracy assessment | es_ES |
dc.subject | Climate change | es_ES |
dc.subject | Data set | es_ES |
dc.subject | Estimation method | es_ES |
dc.subject | Hierarchical system | es_ES |
dc.subject | Penman-Monteith equation | es_ES |
dc.subject | Regression analysis | es_ES |
dc.subject | Temperature profile | es_ES |
dc.subject | Uncertainty analysis | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | INGENIERIA AGROFORESTAL | es_ES |
dc.title | Reference evapotranspiration estimation without local climatic data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00271-010-0243-3 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Martí Pérez, PC.; González Altozano, P.; Gasque Albalate, M. (2011). Reference evapotranspiration estimation without local climatic data. Irrigation Science. 29(6):479-495. doi:10.1007/s00271-010-0243-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1007/s00271-010-0243-3 | es_ES |
dc.description.upvformatpinicio | 479 | es_ES |
dc.description.upvformatpfin | 495 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 221877 | es_ES |
dc.description.references | Abudu S, Bawazir AS, King JP (2010) Infilling missing daily evapotranspiration data using neural networks. J Irrig Drain Eng. doi: 10.1061/(ASCE)IR.1943-4774.0000197 | es_ES |
dc.description.references | Alavi N, Warland JS, Berg AA (2006) Filling gaps in evapotranspiration measurements for water budget studies: evaluation of a Kalman filtering approach. Agric For Meteorol 141(1):57–66 | es_ES |
dc.description.references | Al-Ghobari HM (2000) Estimation of reference evapotranspiration for southern region of Saudi Arabia. Irrig Sci 19(2):81–86 | es_ES |
dc.description.references | Allen RG (1996) Assessing integrity of weather data for reference evapotranspiration estimation. J Irrig Drain Eng 122(2):97–106 | es_ES |
dc.description.references | Allen RG, Smith M, Perrier A, Pereira LS (1994) An update for the calculation of reference evapotranspiration. ICID Bull 43(2):35–92 | es_ES |
dc.description.references | Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing water requirements. FAO Irrigation and Drainage, paper 56. FAO, Rome | es_ES |
dc.description.references | ASCE Task Committee (2000) Artificial neural networks in hydrology. II: Hydrological applications. J Hydrol Eng ASCE 5(2):124–137 | es_ES |
dc.description.references | Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford | es_ES |
dc.description.references | Doorenbos J, Pruitt WO (1977) Crop water requirements. FAO irrigation and drainage paper 56. FAO, Rome | es_ES |
dc.description.references | Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen N, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001a) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107(1):43–69 | es_ES |
dc.description.references | Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen N, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001b) Gap filling strategies for long term energy flux data sets. Agric For Meteorol 107(1):71–77 | es_ES |
dc.description.references | Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt Algorithm. IEEE Trans Neural Netw 5(6):989–993 | es_ES |
dc.description.references | Hagan MT, Delmuth H, Beale M (1996) Neural network design. PWS Publishing Company, Boston | es_ES |
dc.description.references | Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from ambient air temperature. Appl Eng Agric 1(2):96–99 | es_ES |
dc.description.references | Haykin S (1999) Neural networks. A comprehensive foundation. Prentice Hall International Inc., New Jersey | es_ES |
dc.description.references | Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366 | es_ES |
dc.description.references | Hui D, Wan S, Su B, Katul G, Monson R, Luo Y (2004) Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations. Agric For Meteorol 121(1–2):93–111 | es_ES |
dc.description.references | Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE manuals and reports on engineering practices 70. American Society of Civil Engineers, New York | es_ES |
dc.description.references | Jensen DT, Hargreaves GH, Temesgen B, Allen RG (1997) Computation of ETo under nonideal conditions. J Irrig Drain Eng 123(5):394–400 | es_ES |
dc.description.references | Khalil M, Panu US, Lennox WC (2001) groups and neural networks based streamflow data infilling procedures. J Hydrol 241(3–4):153–176 | es_ES |
dc.description.references | Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351(3–4):299–317 | es_ES |
dc.description.references | Kişi Ö (2006a) Evapotranspiration estimation using feed-forward neural networks. Nord Hydrol 37(3):247–260 | es_ES |
dc.description.references | Kişi Ö (2006b) Generalized regression neural networks for evapotranspiration modelling. Hydrol Sci J 51(6):1092–1105 | es_ES |
dc.description.references | Kişi Ö (2007) Evapotranspiration modelling from climatic data using a neural network computing technique. Hydrol Process 21:1925–1934 | es_ES |
dc.description.references | Kişi Ö (2008) The potential of different ANN techniques in evapotranspiration modelling. Hydrol Process 22:1449–2460 | es_ES |
dc.description.references | Kişi Ö (2009) Modelling monthly evaporation using two different neural computing techniques. Irrig Sci 27(5):417–430 | es_ES |
dc.description.references | Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural network. J Irrig Drain Eng 128(4):224–233 | es_ES |
dc.description.references | Kumar M, Bandyopadhyay A, Raghuwanshi NS, Singh R (2008) Comparative study of conventional and artificial neural network-based ETo estimation models. Irrig Sci 26(6):531–545 | es_ES |
dc.description.references | Landeras G, Ortiz-Barredo A, López JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric Water Manag 95(5):553–565 | es_ES |
dc.description.references | Landeras G, Ortiz-Barredo A, López JJ (2009) Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J Irrig Drain Eng 135(3):323–334 | es_ES |
dc.description.references | Llasat MC, Snyder RL (1998) Data error effects on net radiation and evapotranspiration estimation. Agric For Meteorol 91(3–4):209–221 | es_ES |
dc.description.references | Marquardt D (1963) An algorithm for least-squares estimations of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441 | es_ES |
dc.description.references | Martí P, Gasque M (2010) Ancillary data supply strategies for improvement of temperature-based ETo ANN models. Agric Water Manag 97(7):939–955 | es_ES |
dc.description.references | Martí P, Gasque M, Royuela A (2010a) Discussion of ‘forecasting weekly evapotranspiration with ARIMA and artificial neural network models’. J Irrig Drain Eng 136(6):440–444 | es_ES |
dc.description.references | Martí P, Royuela A, Manzano J, Palau G (2010b) Generalization of ETo ANN models through data supplanting. J Irrig Drain Eng 136(3):161–174 | es_ES |
dc.description.references | Martí P, Royuela A, Manzano J (2010c) Assessment of a 4-input artificial neural network for ETo estimation model through data set scanning procedures. Irrig Sci. doi: 10.1007/s00271-010-0224-6 | es_ES |
dc.description.references | Martínez-Cob A (1996) Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain. J Hydrol 174(1–2):19–35 | es_ES |
dc.description.references | Matlab (2007) Users’ manual version 7.4.0 R2007a. The MathWorks Inc., Natick | es_ES |
dc.description.references | Prechelt L (1998) Automatic early stopping using cross validation: quantifying criteria. Neural Netw 11(4):761–767 | es_ES |
dc.description.references | Rahimi A (2008a) Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26(3):253–259 | es_ES |
dc.description.references | Rahimi A (2008b) Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semiarid environment. Irrig Sci 27(1):35–39 | es_ES |
dc.description.references | Sarle WS (1995) Stopped training and other remedies for overfitting. In: Proceedings of the 27th symposium on the interface of computing science statistics, Pittsburgh, pp 352–360 | es_ES |
dc.description.references | Sharma ML (1985) Estimating evapotranspiration. In: Hillel D (ed) Advances in irrigation, vol 3. Academic Press, London | es_ES |
dc.description.references | Stöckle CO, Kjelgaard J, Bellochi G (2004) Evaluation of estimated weather data for calculating Penman-Monteith reference crop evapotranspiration. Irrig Sci 23:39–46 | es_ES |
dc.description.references | Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129(3):214–218 | es_ES |
dc.description.references | Temesgen B, Eching S, Davidoff B, Frame K (2005) Comparison of some reference evapotranspiration equations for California. J Irrig Drain Eng 131(1):73–84 | es_ES |
dc.description.references | Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrig Drain Eng 131(4):316–323 | es_ES |
dc.description.references | Trajkovic S, Kolakovic S (2009) Estimating reference evapotranspiration using limited weather data. J Irrig Drain Eng 135(4):443–449 | es_ES |
dc.description.references | Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting of reference evapotranspiration by artificial neural networks. J Irrig Drain Eng 129(6):454–457 | es_ES |
dc.description.references | Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2):83–89 | es_ES |