Mostrar el registro completo del ítem
Álvaro Muñoz, F.; Sánchez Peiró, JA.; Benedí Ruiz, JM. (2014). Offline Features for Classifying Handwritten Math Symbols with Recurrent Neural Networks. IEEE. https://doi.org/10.1109/ICPR.2014.507
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68388
Título: | Offline Features for Classifying Handwritten Math Symbols with Recurrent Neural Networks | |
Autor: | ||
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
In mathematical expression recognition, symbol
classification is a crucial step. Numerous approaches for recognizing
handwritten math symbols have been published, but most
of them are either an online approach or a ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reserva de todos los derechos | |
ISBN: |
|
|
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | http://dx.doi.org/10.1109/ICPR.2014.507 | |
Título del congreso: |
|
|
Lugar del congreso: |
|
|
Fecha congreso: |
|
|
Código del Proyecto: |
|
|
Agradecimientos: |
This work was partially supported by the Spanish MEC under the STraDA research project (TIN2012-37475-C02-01) and the FPU grant (AP2009-4363), by the Generalitat Valenciana under the grant Prometeo/2009/014, and through ...[+]
|
|
Tipo: |
|