- -

Offline Features for Classifying Handwritten Math Symbols with Recurrent Neural Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Offline Features for Classifying Handwritten Math Symbols with Recurrent Neural Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Álvaro Muñoz, Francisco es_ES
dc.contributor.author Sánchez Peiró, Joan Andreu es_ES
dc.contributor.author Benedí Ruiz, José Miguel es_ES
dc.date.accessioned 2016-07-28T11:17:29Z
dc.date.available 2016-07-28T11:17:29Z
dc.date.issued 2014-08
dc.identifier.isbn 9781479952083
dc.identifier.issn 1051-4651
dc.identifier.uri http://hdl.handle.net/10251/68388
dc.description.abstract In mathematical expression recognition, symbol classification is a crucial step. Numerous approaches for recognizing handwritten math symbols have been published, but most of them are either an online approach or a hybrid approach. There is an absence of a study focused on offline features for handwritten math symbol recognition. Furthermore, many papers provide results difficult to compare. In this paper we assess the performance of several well-known offline features for this task. We also test a novel set of features based on polar histograms and the vertical repositioning method for feature extraction. Finally, we report and analyze the results of several experiments using recurrent neural networks on a large public database of online handwritten math expressions. The combination of online and offline features significantly improved the recognition rate. es_ES
dc.description.sponsorship This work was partially supported by the Spanish MEC under the STraDA research project (TIN2012-37475-C02-01) and the FPU grant (AP2009-4363), by the Generalitat Valenciana under the grant Prometeo/2009/014, and through the EU 7th Framework Programme grant tranScriptorium (Ref: 600707). es_ES
dc.format.extent 6 es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof International Conference on Pattern Recognition
dc.rights Reserva de todos los derechos es_ES
dc.subject Handwritten Math Symbols es_ES
dc.subject Recurrent Neural Networks es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Offline Features for Classifying Handwritten Math Symbols with Recurrent Neural Networks es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1109/ICPR.2014.507
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2012-37475-C02-01/ES/SEARCH IN TRANSCRIBED MANUSCRIPTS AND DOCUMENT AUGMENTATION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/600707/EU/tranScriptorium/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ME//AP2009-4363/ES/AP2009-4363/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F014/ES/Adaptive learning and multimodality in pattern recognition (Almapater)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Álvaro Muñoz, F.; Sánchez Peiró, JA.; Benedí Ruiz, JM. (2014). Offline Features for Classifying Handwritten Math Symbols with Recurrent Neural Networks. IEEE. https://doi.org/10.1109/ICPR.2014.507 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 22nd International Conference on Pattern Recognition (ICPR 2014) es_ES
dc.relation.conferencedate August 24-28, 2015 es_ES
dc.relation.conferenceplace Stockholm, Sweden es_ES
dc.relation.publisherversion http://dx.doi.org/10.1109/ICPR.2014.507 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 269290 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem