- -

A surfactant-assisted probe for the chromo-fluorogenic selective recognition of GSH in water

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A surfactant-assisted probe for the chromo-fluorogenic selective recognition of GSH in water

Show full item record

Agostini, A.; Campos Sánchez, I.; Milani, M.; El Sayed Shehata Nasr, S.; Pascual Vidal, L.; Martínez-Máñez, R.; Licchelli, M.... (2014). A surfactant-assisted probe for the chromo-fluorogenic selective recognition of GSH in water. Organic and Biomolecular Chemistry. 12(12):1871-1874. https://doi.org/10.1039/c3ob42095g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68454

Files in this item

Item Metadata

Title: A surfactant-assisted probe for the chromo-fluorogenic selective recognition of GSH in water
Author: Agostini, Alessandro Campos Sánchez, Inmaculada Milani, Michele El Sayed Shehata Nasr, Sameh Pascual Vidal, Lluís Martínez-Máñez, Ramón Licchelli, Maurizio Sancenón Galarza, Félix
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Issued date:
Abstract:
[EN] Chromo-fluorogenic detection of GSH versus cysteine in water was accomplished using a pyrylium-stilbene derivative and CTAB micelles
Subjects: TURN-ON PROBE , FLUORESCENT-PROBE , LIVING CELLS , COLORIMETRIC PROBES , OXIDATIVE STRESS , THIOL PROBE , GLUTATHIONE , CYSTEINE , BIOTHIOLS , NANOPARTICLES
Copyrigths: Cerrado
Source:
Organic and Biomolecular Chemistry. (issn: 1477-0520 ) (eissn: 1477-0539 )
DOI: 10.1039/c3ob42095g
Publisher:
Royal Society of Chemistry
Publisher version: https://dx.doi.org/10.1039/c3ob42095g
Project ID:
info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-01/ES/DESARROLLO DE MATERIALES FUNCIONALIZADOS CON PUERTAS NANOSCOPICAS PARA APLICACIONES DE LIBERACION CONTROLADA Y SENSORES PARA LA DETECCION DE NITRATO AMONICO, SULFIDRICO Y CO/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/
Thanks:
The authors thank the Spanish Government (project MAT2012-38429-C04-01), the Generalitat Valenciana (project PROMETEO/2009/016) and the CIBER-BBN for their support. AA also thanks the Generalitat Valenciana for his Santiago ...[+]
Type: Artículo

References

Anderson, M. E. (1998). Glutathione: an overview of biosynthesis and modulation. Chemico-Biological Interactions, 111-112, 1-14. doi:10.1016/s0009-2797(97)00146-4

Lu, S. C. (2009). Regulation of glutathione synthesis. Molecular Aspects of Medicine, 30(1-2), 42-59. doi:10.1016/j.mam.2008.05.005

Smith, C. V., Jones, D. P., Guenthner, T. M., Lash, L. H., & Lauterburg, B. H. (1996). Compartmentation of Glutathione: Implications for the Study of Toxicity and Disease. Toxicology and Applied Pharmacology, 140(1), 1-12. doi:10.1006/taap.1996.0191 [+]
Anderson, M. E. (1998). Glutathione: an overview of biosynthesis and modulation. Chemico-Biological Interactions, 111-112, 1-14. doi:10.1016/s0009-2797(97)00146-4

Lu, S. C. (2009). Regulation of glutathione synthesis. Molecular Aspects of Medicine, 30(1-2), 42-59. doi:10.1016/j.mam.2008.05.005

Smith, C. V., Jones, D. P., Guenthner, T. M., Lash, L. H., & Lauterburg, B. H. (1996). Compartmentation of Glutathione: Implications for the Study of Toxicity and Disease. Toxicology and Applied Pharmacology, 140(1), 1-12. doi:10.1006/taap.1996.0191

Chen, X., Zhou, Y., Peng, X., & Yoon, J. (2010). Fluorescent and colorimetric probes for detection of thiols. Chemical Society Reviews, 39(6), 2120. doi:10.1039/b925092a

Moragues, M. E., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews, 40(5), 2593. doi:10.1039/c0cs00015a

Santos-Figueroa, L. E., Moragues, M. E., Climent, E., Agostini, A., Martínez-Máñez, R., & Sancenón, F. (2013). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chemical Society Reviews, 42(8), 3489. doi:10.1039/c3cs35429f

Zhou, Y., & Yoon, J. (2012). Recent progress in fluorescent and colorimetric chemosensors for detection ofamino acids. Chem. Soc. Rev., 41(1), 52-67. doi:10.1039/c1cs15159b

Kaur, K., Saini, R., Kumar, A., Luxami, V., Kaur, N., Singh, P., & Kumar, S. (2012). Chemodosimeters: An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coordination Chemistry Reviews, 256(17-18), 1992-2028. doi:10.1016/j.ccr.2012.04.013

Long, L., Lin, W., Chen, B., Gao, W., & Yuan, L. (2011). Construction of a FRET-based ratiometric fluorescent thiol probe. Chem. Commun., 47(3), 893-895. doi:10.1039/c0cc03806g

Deng, L., Wu, W., Guo, H., Zhao, J., Ji, S., Zhang, X., … Zhang, C. (2011). Colorimetric and Ratiometric Fluorescent Chemosensor Based on Diketopyrrolopyrrole for Selective Detection of Thiols: An Experimental and Theoretical Study. The Journal of Organic Chemistry, 76(22), 9294-9304. doi:10.1021/jo201487m

Jung, H. S., Ko, K. C., Kim, G.-H., Lee, A.-R., Na, Y.-C., Kang, C., … Kim, J. S. (2011). Coumarin-Based Thiol Chemosensor: Synthesis, Turn-On Mechanism, and Its Biological Application. Organic Letters, 13(6), 1498-1501. doi:10.1021/ol2001864

Kwon, H., Lee, K., & Kim, H.-J. (2011). Coumarin–malonitrile conjugate as a fluorescence turn-on probe for biothiols and its cellular expression. Chem. Commun., 47(6), 1773-1775. doi:10.1039/c0cc04092d

Huo, F.-J., Sun, Y.-Q., Su, J., Chao, J.-B., Zhi, H.-J., & Yin, C.-X. (2009). Colorimetric Detection of Thiols Using a Chromene Molecule. Organic Letters, 11(21), 4918-4921. doi:10.1021/ol901951h

Lin, W., Yuan, L., Cao, Z., Feng, Y., & Long, L. (2009). A Sensitive and Selective Fluorescent Thiol Probe in Water Based on the Conjugate 1,4-Addition of Thiols to α,β-Unsaturated Ketones. Chemistry - A European Journal, 15(20), 5096-5103. doi:10.1002/chem.200802751

Tang, X., Liu, W., Wu, J., Zhao, W., Zhang, H., & Wang, P. (2011). A colorimetric chemosensor for fast detection of thiols based on intramolecular charge transfer. Tetrahedron Letters, 52(40), 5136-5139. doi:10.1016/j.tetlet.2011.07.111

Lim, S.-Y., Lee, S., Park, S. B., & Kim, H.-J. (2011). Highly selective fluorescence turn-on probe for glutathione. Tetrahedron Letters, 52(30), 3902-3904. doi:10.1016/j.tetlet.2011.05.086

García-Beltrán, O., Mena, N., Pérez, E. G., Cassels, B. K., Nuñez, M. T., Werlinger, F., … Pavez, P. (2011). The development of a fluorescence turn-on sensor for cysteine, glutathione and other biothiols. A kinetic study. Tetrahedron Letters, 52(49), 6606-6609. doi:10.1016/j.tetlet.2011.09.137

Ha, H.-J., Yoon, D.-H., Park, S., & Kim, H.-J. (2011). Fluorescence turn-on probe for biothiols: intramolecular hydrogen bonding effect on the Michael reaction. Tetrahedron, 67(40), 7759-7762. doi:10.1016/j.tet.2011.08.002

Chen, X., Ko, S.-K., Kim, M. J., Shin, I., & Yoon, J. (2010). A thiol-specific fluorescent probe and its application for bioimaging. Chemical Communications, 46(16), 2751. doi:10.1039/b925453f

Huo, F.-J., Sun, Y.-Q., Su, J., Yang, Y.-T., Yin, C.-X., & Chao, J.-B. (2010). Chromene «Lock», Thiol «Key», and Mercury(II) Ion «Hand»: A Single Molecular Machine Recognition System. Organic Letters, 12(21), 4756-4759. doi:10.1021/ol101771j

Zhao, N., Wu, Y.-H., Shi, L.-X., Lin, Q.-P., & Chen, Z.-N. (2010). A sensitive phosphorescent thiol chemosensor based on an iridium(iii) complex with α,β-unsaturated ketone functionalized 2,2′-bipyridyl ligand. Dalton Transactions, 39(35), 8288. doi:10.1039/c0dt00456a

Kand, D., Kalle, A. M., Varma, S. J., & Talukdar, P. (2012). A chromenoquinoline-based fluorescent off–on thiol probe for bioimaging. Chemical Communications, 48(21), 2722. doi:10.1039/c2cc16593g

Li, X., Qian, S., He, Q., Yang, B., Li, J., & Hu, Y. (2010). Design and synthesis of a highly selective fluorescent turn-on probe for thiol bioimaging in living cells. Organic & Biomolecular Chemistry, 8(16), 3627. doi:10.1039/c004344c

Cao, X., Lin, W., & Yu, Q. (2011). A Ratiometric Fluorescent Probe for Thiols Based on a Tetrakis(4-hydroxyphenyl)porphyrin–Coumarin Scaffold. The Journal of Organic Chemistry, 76(18), 7423-7430. doi:10.1021/jo201199k

Wang, S.-P., Deng, W.-J., Sun, D., Yan, M., Zheng, H., & Xu, J.-G. (2009). A colorimetric and fluorescent merocyanine-based probe for biological thiols. Organic & Biomolecular Chemistry, 7(19), 4017. doi:10.1039/b909760k

Hong, V., Kislukhin, A. A., & Finn, M. G. (2009). Thiol-Selective Fluorogenic Probes for Labeling and Release. Journal of the American Chemical Society, 131(29), 9986-9994. doi:10.1021/ja809345d

Ruan, Y.-B., Li, A.-F., Zhao, J.-S., Shen, J.-S., & Jiang, Y.-B. (2010). Specific Hg2+-mediated perylene bisimide aggregation for highly sensitive detection of cysteine. Chemical Communications, 46(27), 4938. doi:10.1039/c0cc00630k

Wu, J., Sheng, R., Liu, W., Wang, P., Ma, J., Zhang, H., & Zhuang, X. (2011). Reversible Fluorescent Probe for Highly Selective and Sensitive Detection of Mercapto Biomolecules. Inorganic Chemistry, 50(14), 6543-6551. doi:10.1021/ic200181p

Yue, Y., Guo, Y., Xu, J., & Shao, S. (2011). A Bodipy-based derivative for selective fluorescence sensing of homocysteine and cysteine. New J. Chem., 35(1), 61-64. doi:10.1039/c0nj00720j

Zhu, B., Zhang, X., Li, Y., Wang, P., Zhang, H., & Zhuang, X. (2010). A colorimetric and ratiometric fluorescent probe for thiols and its bioimaging applications. Chemical Communications, 46(31), 5710. doi:10.1039/c0cc00477d

Lee, J. H., Lim, C. S., Tian, Y. S., Han, J. H., & Cho, B. R. (2010). A Two-Photon Fluorescent Probe for Thiols in Live Cells and Tissues. Journal of the American Chemical Society, 132(4), 1216-1217. doi:10.1021/ja9090676

Lan, M., Wu, J., Liu, W., Zhang, H., Zhang, W., Zhuang, X., & Wang, P. (2011). Highly sensitive fluorescent probe for thiols based on combination of PET and ESIPT mechanisms. Sensors and Actuators B: Chemical, 156(1), 332-337. doi:10.1016/j.snb.2011.04.042

Huang, Z., Pu, F., Lin, Y., Ren, J., & Qu, X. (2011). Modulating DNA-templated silver nanoclusters for fluorescence turn-on detection of thiol compounds. Chemical Communications, 47(12), 3487. doi:10.1039/c0cc05651k

Xie, W. Y., Huang, W. T., Li, N. B., & Luo, H. Q. (2012). Design of a dual-output fluorescent DNA logic gate and detection of silver ions and cysteine based on graphene oxide. Chem. Commun., 48(1), 82-84. doi:10.1039/c1cc15449d

Duan, Y. L., Shi, Y. G., Chen, J. H., Wu, X. H., Wang, G. K., Zhou, Y., & Zhang, J. F. (2012). 1,8-Naphthyridine modified rhodamine B derivative and Cu2+ complex: colorimetric sensing of thiols in aqueous media. Tetrahedron Letters, 53(48), 6544-6547. doi:10.1016/j.tetlet.2012.09.089

Zhou, L., Lin, Y., Huang, Z., Ren, J., & Qu, X. (2012). Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+and biothiols in complex matrices. Chem. Commun., 48(8), 1147-1149. doi:10.1039/c2cc16791c

Ma, B., Zeng, F., Li, X., & Wu, S. (2012). A facile approach for sensitive, reversible and ratiometric detection of biothiols based on thymine-mediated excimer–monomer transformation. Chemical Communications, 48(48), 6007. doi:10.1039/c2cc32064a

Chen, Z., Lin, Y., Zhao, C., Ren, J., & Qu, X. (2012). Silver metallization engineered conformational switch of G-quadruplex for fluorescence turn-on detection of biothiols. Chemical Communications, 48(93), 11428. doi:10.1039/c2cc36690h

Lou, Z., Li, P., Sun, X., Yang, S., Wang, B., & Han, K. (2013). A fluorescent probe for rapid detection of thiols and imaging of thiols reducing repair and H2O2oxidative stress cycles in living cells. Chem. Commun., 49(4), 391-393. doi:10.1039/c2cc36839k

Leung, K.-H., He, H.-Z., Ma, V. P.-Y., Chan, D. S.-H., Leung, C.-H., & Ma, D.-L. (2013). A luminescent G-quadruplex switch-on probe for the highly selective and tunable detection of cysteine and glutathione. Chem. Commun., 49(8), 771-773. doi:10.1039/c2cc37710a

Li, G., Chen, Y., Wu, J., Ji, L., & Chao, H. (2013). Thiol-specific phosphorescent imaging in living cells with an azobis(2,2′-bipyridine)-bridged dinuclear iridium(iii) complex. Chemical Communications, 49(20), 2040. doi:10.1039/c3cc38687b

Yang, P., Xu, Q.-Z., Jin, S.-Y., Zhao, Y., Lu, Y., Xu, X.-W., & Yu, S.-H. (2011). Synthesis of Fe3O4@Phenol Formaldehyde Resin Core-Shell Nanospheres Loaded with Au Nanoparticles as Magnetic FRET Nanoprobes for Detection of Thiols in Living Cells. Chemistry - A European Journal, 18(4), 1154-1160. doi:10.1002/chem.201102188

Wang, R., Chen, L., Liu, P., Zhang, Q., & Wang, Y. (2012). Sensitive Near-Infrared Fluorescent Probes for Thiols Based on SeN Bond Cleavage: Imaging in Living Cells and Tissues. Chemistry - A European Journal, 18(36), 11343-11349. doi:10.1002/chem.201200671

Jia, X., Li, J., & Wang, E. (2012). Lighting-Up of the Dye Malachite Green with Mercury(II)-DNA and Its Application for Fluorescence Turn-Off Detection of Cysteine and Glutathione. Chemistry - A European Journal, 18(42), 13494-13500. doi:10.1002/chem.201103768

Sun, W., Li, W., Li, J., Zhang, J., Du, L., & Li, M. (2012). Naphthalimide-based fluorescent off/on probes for the detection of thiols. Tetrahedron, 68(27-28), 5363-5367. doi:10.1016/j.tet.2012.04.110

Sun, W., Li, W., Li, J., Zhang, J., Du, L., & Li, M. (2012). A benzothiazole-based fluorescent probe for thiol bioimaging. Tetrahedron Letters, 53(18), 2332-2335. doi:10.1016/j.tetlet.2012.02.098

Li, Y., Wu, P., Xu, H., Zhang, H., & Zhong, X. (2011). Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity. The Analyst, 136(1), 196-200. doi:10.1039/c0an00452a

Chen, Z., Wang, Z., Chen, J., Wang, S., & Huang, X. (2012). Sensitive and selective detection of glutathione based on resonance light scattering using sensitive gold nanoparticles as colorimetric probes. The Analyst, 137(13), 3132. doi:10.1039/c2an35405e

Tian, D., Qian, Z., Xia, Y., & Zhu, C. (2012). Gold Nanocluster-Based Fluorescent Probes for Near-Infrared and Turn-On Sensing of Glutathione in Living Cells. Langmuir, 28(8), 3945-3951. doi:10.1021/la204380a

Liu, J., Bao, C., Zhong, X., Zhao, C., & Zhu, L. (2010). Highly selective detection of glutathione using a quantum-dot-based OFF–ON fluorescent probe. Chemical Communications, 46(17), 2971. doi:10.1039/b924299f

Yao, Z., Feng, X., Li, C., & Shi, G. (2009). Conjugated polyelectrolyte as a colorimetric and fluorescent probe for the detection of glutathione. Chemical Communications, (39), 5886. doi:10.1039/b912811e

Shao, N., Jin, J., Wang, H., Zheng, J., Yang, R., Chan, W., & Abliz, Z. (2010). Design of Bis-spiropyran Ligands as Dipolar Molecule Receptors and Application to in Vivo Glutathione Fluorescent Probes. Journal of the American Chemical Society, 132(2), 725-736. doi:10.1021/ja908215t

Niu, L.-Y., Guan, Y.-S., Chen, Y.-Z., Wu, L.-Z., Tung, C.-H., & Yang, Q.-Z. (2012). BODIPY-Based Ratiometric Fluorescent Sensor for Highly Selective Detection of Glutathione over Cysteine and Homocysteine. Journal of the American Chemical Society, 134(46), 18928-18931. doi:10.1021/ja309079f

Guo, Y., Yang, X., Hakuna, L., Barve, A., Escobedo, J. O., Lowry, M., & Strongin, R. M. (2012). A Fast Response Highly Selective Probe for the Detection of Glutathione in Human Blood Plasma. Sensors, 12(5), 5940-5950. doi:10.3390/s120505940

Agostini, A., Milani, M., Martínez-Máñez, R., Licchelli, M., Soto, J., & Sancenón, F. (2012). Azo Dyes Functionalized with Alkoxysilyl Ethers as Chemodosimeters for the Chromogenic Detection of the Fluoride Anion. Chemistry - An Asian Journal, 7(9), 2040-2044. doi:10.1002/asia.201200323

Moragues, M. E., Esteban, J., Ros-Lis, J. V., Martínez-Máñez, R., Marcos, M. D., Martínez, M., … Sancenón, F. (2011). Sensitive and Selective Chromogenic Sensing of Carbon Monoxide via Reversible Axial CO Coordination in Binuclear Rhodium Complexes. Journal of the American Chemical Society, 133(39), 15762-15772. doi:10.1021/ja206251r

Hu, X., Li, C., Song, X., Zhang, D., & Li, Y. (2011). A new Cu2+-selective self-assembled fluorescent chemosensor based on thiacalix[4]arene. Inorganic Chemistry Communications, 14(10), 1632-1635. doi:10.1016/j.inoche.2011.06.026

Riis-Johannessen, T., & Severin, K. (2010). A Micelle-Based Chemosensing Ensemble for the Fluorimetric Detection of Chloride in Water. Chemistry - A European Journal, 16(28), 8291-8295. doi:10.1002/chem.201001287

Grandini, P., Mancin, F., Tecilla, P., Scrimin, P., & Tonellato, U. (1999). Exploiting the Self-Assembly Strategy for the Design of Selective CuII Ion Chemosensors. Angewandte Chemie International Edition, 38(20), 3061-3064. doi:10.1002/(sici)1521-3773(19991018)38:20<3061::aid-anie3061>3.0.co;2-a

Cavallaro, G., Giammona, G., Pasotti, L., & Pallavicini, P. (2011). A Fluorescent Molecular Sensor for pH Windows in Traditional and Polymeric Biocompatible Micelles: Comicellization of Anionic Species To Shift and Reshape the ON Window. Chemistry – A European Journal, 17(38), 10574-10582. doi:10.1002/chem.201101294

Pallavicini, P., Diaz-Fernandez, Y. A., Foti, F., Mangano, C., & Patroni, S. (2006). Fluorescent Sensors for Hg2+in Micelles: A New Approach that Transforms an ON-OFF into an OFF-ON Response as a Function of the Lipophilicity of the Receptor. Chemistry - A European Journal, 13(1), 178-187. doi:10.1002/chem.200600879

Santos-Figueroa, L. E., Giménez, C., Agostini, A., Aznar, E., Marcos, M. D., Sancenón, F., … Amorós, P. (2013). Selective and Sensitive Chromofluorogenic Detection of the Sulfite Anion in Water Using Hydrophobic Hybrid Organic-Inorganic Silica Nanoparticles. Angewandte Chemie International Edition, 52(51), 13712-13716. doi:10.1002/anie.201306688

Marques, M. R. C., Loebenberg, R., & Almukainzi, M. (2011). Simulated Biological Fluids with Possible Application in Dissolution Testing. Dissolution Technologies, 18(3), 15-28. doi:10.14227/dt180311p15

Salazar, J.-F., Schorr, H., Herrmann, W., Herbeth, B., Siest, G., & Leroy, P. (1999). Measurement of Thiols in Human Plasma Using Liquid Chromatography with Precolumn Derivatization and Fluorescence Detection. Journal of Chromatographic Science, 37(12), 469-476. doi:10.1093/chromsci/37.12.469

Nolin, T. D., McMenamin, M. E., & Himmelfarb, J. (2007). Simultaneous determination of total homocysteine, cysteine, cysteinylglycine, and glutathione in human plasma by high-performance liquid chromatography: Application to studies of oxidative stress. Journal of Chromatography B, 852(1-2), 554-561. doi:10.1016/j.jchromb.2007.02.024

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record