Resumen:
|
[EN] The main objective of this work is the modeling of diesel sprays under engine conditions, including the atomization, transport and evaporation processes pivotal in the diesel spray formation and its development. For ...[+]
[EN] The main objective of this work is the modeling of diesel sprays under engine conditions, including the atomization, transport and evaporation processes pivotal in the diesel spray formation and its development. For this purpose, an Eulerian single fluid model, embedded in a RANS environment, is implemented in the CFD platform OpenFOAM.
The modeling approach implemented here is based on the ⅀-Y model. The model is founded on the assumption of flow scales separation. In actual injection systems, it can be assumed that the flow exiting the nozzle is operating at large Reynolds and Weber numbers and thus, it is possible to assume a separation of features such as mass transport (large scales) from the atomization process occurring at smaller scales. The liquid/gas mixture is treated as a pseudo-fluid with variable density and which flows with a single velocity field. Moreover, the mean geometry of the liquid structures can be characterized by modeling the mean surface area of the liquid-gas interphase per unit of volume. Additionally, an evaporation model has been developed around the particular characteristics of the current engine technologies. This means that vaporization process is limited by fuel-air mixing rate and fuel droplets evaporate as long as there is enough air for them to heat up and vaporize. Consequently, the evaporation model is based on the Locally Homogeneous Flow (LHF) approach. Under the assumption of an adiabatic mixing, in the liquid/vapor region, the spray is supposed to have a trend towards adiabatic saturation conditions and to determine this equilibrium between phases Raoult's ideal law is considered. Finally, the spray model is coupled with an advanced combustion model based on approximated diffusion flames (ADF), which reduces the computational effort especially for complex fuels and is a natural step for modeling diesel sprays.
First, the model is applied to a basic external flow case under non-vaporizing conditions, extremely convenient due to both the experimental database available and the symmetric layout which allows important simplification of the modeling effort. Good agreement between computational results and experimental data is observed, which encourages its application to a more complex configuration. Secondly, the model is applied to the "Spray A" from the Engine Combustion Network (ECN), under non-vaporizing conditions, in order to reproduce the internal structure of diesel sprays as well as to produce accurate predictions of SMD droplets sizes. Finally, vaporizing "Spray A" studies are conducted together with the baseline reacting condition of this database. The calculated spray penetration, liquid length, spray velocities, ignition delay and lift-off length are compared with experimental data and analysed in detail.
[-]
[ES] El objetivo principal de este trabajo es el modelado de chorros diésel en condiciones de motor, incluyendo los fenómenos de atomización, transporte y evaporación fundamentales en la formación y desarrollo del chorro. ...[+]
[ES] El objetivo principal de este trabajo es el modelado de chorros diésel en condiciones de motor, incluyendo los fenómenos de atomización, transporte y evaporación fundamentales en la formación y desarrollo del chorro. Para este fin, se implementa un modelo de spray euleriano de tipo monofluido en un entorno RANS en la plataforma CFD OpenFOAM.
El enfoque de modelado aplicado aquí sigue la idea de un modelo del tipo ⅀-Y. El modelo se fundamenta en la hipótesis de separación de escalas del flujo. En los sistemas de inyección actuales, es posible asumir que el flujo que sale de la tobera opera a altos números de Reynolds y Webber y por tanto, es posible considerar la independencia de fenómenos como el transporte de masa (grandes escalas del flujo) de los procesos de atomización que ocurren a escalas menores. La mezcla líquido/gas se trata como un pseudo-fluido con densidad variable y que fluye según un único campo de velocidad. Además, la geometría promedio de las estructuras de líquido se puede caracterizar mediante el modelado de la superficie de la interfase líquido/gas por unidad de volumen. Completando el modelo de chorro, se ha desarrollado un modelo de evaporación alrededor de las características particulares de las tecnologías actuales de los motores. Esto supone que el proceso de evaporación está controlado por mezcla aire-combustible y las gotas de combustible se evaporan siempre que exista suficiente aire para calentarlas y evaporarlas. Debido a esto, el modelo de evaporación implementado está basado en el enfoque de Flujos Localmente Homogéneos (LHF). Considerando una mezcla adiabática, en la región líquido/vapor, se supone que el chorro tiende a las condiciones adiabáticas de saturación y para determinar este equilibrio entre fases, se utiliza la ley ideal de Raoult. Finalmente, el modelo de chorro se acopla con un modelo avanzado de combustión basado en llamas de difusión aproximadas (ADF), que reduce el coste computacional especialmente para combustibles complejos y supone el paso lógico en el desarrollo del modelo para simular chorros diesel.
En primer lugar, el modelo se aplica al cálculo de un caso básico de flujo externo no evaporativo, muy adecuado tanto por la extensa base de datos experimentales disponible como por la simetría geométrica que presenta, permitiendo una importante simplificación de la simulación. Los resultados obtenidos presentan un buen acuerdo con los experimentos, lo cual estimula su aplicación en configuraciones más complejas. En segundo lugar, el modelo se aplica al cálculo del "Spray A" del Engine Combustion Network (ECN), no evaporativo, para reproducir la estructura interna del chorro diesel así como predecir tamaños de gota (SMD) de forma precisa. Finalmente, se realizan estudios evaporativos del "Spray A" junto con la condición nominal reactiva de esta base de datos. La penetración de vapor, la longitud líquida, velocidad, el tiempo de retraso y la longitud de despegue de llama calculados se comparan con los datos experimentales y se analizan en detalle.
[-]
[CA] L'objectiu principal d'aquest treball és el modelatge de dolls dièsel en condicions de motor, incloent els fenòmens d'atomització, transport i evaporació fonamentals en la formació i desenvolupament del doll. Amb ...[+]
[CA] L'objectiu principal d'aquest treball és el modelatge de dolls dièsel en condicions de motor, incloent els fenòmens d'atomització, transport i evaporació fonamentals en la formació i desenvolupament del doll. Amb aquesta finalitat, s'implementa un model de doll eulerià de tipus monofluid en un entorn RANS a la plataforma CFD OpenFOAM.
L'enfocament de modelatge aplicat ací segueix la idea d'un model del tipus ⅀-Y. El model es fonamenta en la hipòtesi de separació d'escales del flux. En els sistemes d'injecció actuals, és possible assumir que el flux que surt de la tovera opera a alts nombres de Reynolds i Webber, i per tant és possible considerar la independència de fenòmens com el transport de massa (grans escales del flux) dels processos d'atomització que ocorren a escales menors. La mescla líquid / gas es tracta com un pseudo-fluid amb densitat variable i que flueix segons un únic camp de velocitat. A més, la geometria mitjana de les estructures de líquid es pot caracteritzar mitjançant el modelatge de la superfície de la interfase líquid / gas per unitat de volum. Completant el model, s'ha desenvolupat un model d'evaporació al voltant de les característiques particulars de les tecnologies actuals dels motors. Això suposa que el procés d'evaporació està controlat per la mescla aire-combustible i les gotes de combustible s'evaporen sempre que hi hagi suficient aire per escalfar i evaporar. A causa d'això, el model d'evaporació implementat està basat en el plantejament de fluxos Localment Homogenis (LHF). Considerant una mescla adiabàtica, a la regió líquid / vapor, se suposa que el doll tendeix a les condicions adiabàtiques de saturació i per determinar aquest equilibri entre fases, s'utilitza la llei ideal de Raoult. Finalment, el model de doll s'acobla amb un model avançat de combustió basat en flamelets de difusió aproximades (ADF), que redueix el cost computacional especialment per a combustibles complexos i suposa el pas lògic en el desenvolupament del model per simular dolls dièsel.
En primer lloc, el model s'aplica al càlcul d'un cas bàsic de flux extern no evaporatiu, molt adequat tant per l'extensa base de dades experimentals disponible com per la simetria geomètrica que presenta, permetent una important simplificació de la simulació. Els resultats obtinguts presenten un bon acord amb els experiments, la qual cosa estimula la seva aplicació en configuracions més complexes. En segon lloc, el model s'aplica al càlcul del "Spray A" no evaporatiu de la xarxa Engine Combustion Network (ECN), per reproduir l'estructura interna del doll dièsel així com predir mides de gota (SMD) de forma precisa. Finalment, es realitzen estudis evaporatius del "Spray A" juntament amb la condició nominal reactiva d'aquesta base de dades. La penetració de vapor, la longitud líquida, velocitat, el temps de retard i la longitud d'enlairament de flama calculats es comparen amb les dades experimentals i s'analitzen en detall.
[-]
|