Mostrar el registro sencillo del ítem
dc.contributor.author | Ferrando Martín, Vicente | es_ES |
dc.contributor.author | Castro Palacio, Juan Carlos | es_ES |
dc.contributor.author | Marí Soucase, Bernabé | es_ES |
dc.contributor.author | Monsoriu Serra, Juan Antonio | es_ES |
dc.date.accessioned | 2016-09-01T10:15:35Z | |
dc.date.available | 2016-09-01T10:15:35Z | |
dc.date.issued | 2014-03 | |
dc.identifier.issn | 0217-9849 | |
dc.identifier.uri | http://hdl.handle.net/10251/68516 | |
dc.description.abstract | The scattering properties of particles in a one-dimensional Fibonacci sequence based potential have been analyzed by means of the Transfer Matrix Method. The electronic band gaps are examined comparatively with those obtained using the corresponding periodic potentials. The reflection coefficient shows self-similar properties for the Fibonacci superlattices. Moreover, by using the generalized Bragg’s condition, the band gaps positions are derived from the golden mean involved in the design of the superlattice structure. | es_ES |
dc.description.sponsorship | We acknowledge the financial support from Ministerio de Ciencia e Innovacion (grant FIS2011-23175), and Generalitat Valenciana (grant PROMETEO2009-077), Spain. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | World Scientific Publishing | es_ES |
dc.relation.ispartof | Modern Physics Letters B | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fibonacci | es_ES |
dc.subject | Superlattices | es_ES |
dc.subject | Quantum potentia | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Study on band gap structure of Fibonacci quantum superlattices by using the transfer matrix method | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1142/S0217984914500535 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS2011-23175/ES/DISEÑO Y REALIZACION DE ESTRUCTURAS DIFRACTIVAS APERIODICAS: NUEVAS LENTES OFTALMICAS Y OTRAS APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F077/ES/Grupo de fibras ópticas y procesado de señal/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Ferrando Martín, V.; Castro Palacio, JC.; Marí Soucase, B.; Monsoriu Serra, JA. (2014). Study on band gap structure of Fibonacci quantum superlattices by using the transfer matrix method. Modern Physics Letters B. 28(7):14500531-14500539. https://doi.org/10.1142/S0217984914500535 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http:dx.doi.org/http://dx.doi.org/10.1142/S0217984914500535 | es_ES |
dc.description.upvformatpinicio | 14500531 | es_ES |
dc.description.upvformatpfin | 14500539 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 28 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.senia | 261869 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | B. R. Nag, Physics of Quantum Well Devices (Kluver Academic, Dordrecht, 2001) p. 312. | es_ES |
dc.description.references | Roblin, P., & Rohdin, H. (2002). High-speed heterostructure devices. doi:10.1017/cbo9780511754593 | es_ES |
dc.description.references | Kolbas, R. M., & Holonyak, N. (1984). Man‐made quantum wells: A new perspective on the finite square‐well problem. American Journal of Physics, 52(5), 431-437. doi:10.1119/1.13649 | es_ES |
dc.description.references | Mazurczyk, R. (1999). Semiconductor Superlattices. Chaos, Solitons & Fractals, 10(12), 1971-1982. doi:10.1016/s0960-0779(98)00245-8 | es_ES |
dc.description.references | Axel, F., & Terauchi, H. (1991). High-resolution x-ray-diffraction spectra of Thue-Morse GaAs-AlAs heterostructures: Towards a novel description of disorder. Physical Review Letters, 66(17), 2223-2226. doi:10.1103/physrevlett.66.2223 | es_ES |
dc.description.references | Järrendahl, K., Dulea, M., Birch, J., & Sundgren, J.-E. (1995). X-ray diffraction from amorphous Ge/Si Cantor superlattices. Physical Review B, 51(12), 7621-7631. doi:10.1103/physrevb.51.7621 | es_ES |
dc.description.references | Sánchez-Soto, L. L., Monzón, J. J., Barriuso, A. G., & Cariñena, J. F. (2012). The transfer matrix: A geometrical perspective. Physics Reports, 513(4), 191-227. doi:10.1016/j.physrep.2011.10.002 | es_ES |
dc.description.references | KAYA, T. (2012). CORRELATED REDUCED TRANSFER MATRIX APPROACH FOR ISING MODEL. International Journal of Modern Physics B, 26(14), 1250085. doi:10.1142/s0217979212500853 | es_ES |
dc.description.references | KAYA, T. (2012). IMPROVED MEAN-FIELD TRANSFER MATRIX MODEL FOR HYPERCUBIC ISING SYSTEMS. Modern Physics Letters B, 26(17), 1250111. doi:10.1142/s0217984912501114 | es_ES |
dc.description.references | Monsoriu, J. A., Villatoro, F. R., Marín, M. J., Pérez, J., & Monreal, L. (2006). Quantum fractal superlattices. American Journal of Physics, 74(9), 831-836. doi:10.1119/1.2209242 | es_ES |
dc.description.references | Monsoriu, J. A., Villatoro, F. R., Marín, M. J., Urchueguía, J. F., & Córdoba, P. F. de. (2005). A transfer matrix method for the analysis of fractal quantum potentials. European Journal of Physics, 26(4), 603-610. doi:10.1088/0143-0807/26/4/005 | es_ES |
dc.description.references | Villatoro, F. R., & Monsoriu, J. A. (2008). Tunneling in quantum superlattices with variable lacunarity. Physics Letters A, 372(21), 3801-3807. doi:10.1016/j.physleta.2008.03.002 | es_ES |
dc.description.references | CASTRO-PALACIO, J. C., VILLATORO, F. R., MENDOZA-YERO, O., VELÁZQUEZ-ABAD, L., & MONSORIU, J. A. (2012). SELF-SIMILAR BEHAVIOR IN SEMICONDUCTOR SUPERLATTICES. Fractals, 20(01), 89-95. doi:10.1142/s0218348x12500089 | es_ES |
dc.description.references | Fleming, A. J. (2002). Plant mathematics and Fibonacci’s flowers. Nature, 418(6899), 723-723. doi:10.1038/418723a | es_ES |
dc.description.references | Mahler, L., Tredicucci, A., Beltram, F., Walther, C., Faist, J., Beere, H. E., … Wiersma, D. S. (2010). Quasi-periodic distributed feedback laser. Nature Photonics, 4(3), 165-169. doi:10.1038/nphoton.2009.285 | es_ES |
dc.description.references | N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976) p. 848. | es_ES |
dc.description.references | Calatayud, A., Ferrando, V., Remón, L., Furlan, W. D., & Monsoriu, J. A. (2013). Twin axial vortices generated by Fibonacci lenses. Optics Express, 21(8), 10234. doi:10.1364/oe.21.010234 | es_ES |
dc.description.references | Albuquerque, E. L., & Cottam, M. G. (2003). Theory of elementary excitations in quasiperiodic structures. Physics Reports, 376(4-5), 225-337. doi:10.1016/s0370-1573(02)00559-8 | es_ES |
dc.description.references | Maciá, E. (2012). Exploiting aperiodic designs in nanophotonic devices. Reports on Progress in Physics, 75(3), 036502. doi:10.1088/0034-4885/75/3/036502 | es_ES |
dc.description.references | Maciá, E. (2005). The role of aperiodic order in science and technology. Reports on Progress in Physics, 69(2), 397-441. doi:10.1088/0034-4885/69/2/r03 | es_ES |
dc.description.references | Hsueh, W. J., Chang, C. H., Cheng, Y. H., & Wun, S. J. (2012). Effective Bragg conditions in a one-dimensional quasicrystal. Optics Express, 20(24), 26618. doi:10.1364/oe.20.026618 | es_ES |