- -

Study on band gap structure of Fibonacci quantum superlattices by using the transfer matrix method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study on band gap structure of Fibonacci quantum superlattices by using the transfer matrix method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferrando Martín, Vicente es_ES
dc.contributor.author Castro Palacio, Juan Carlos es_ES
dc.contributor.author Marí Soucase, Bernabé es_ES
dc.contributor.author Monsoriu Serra, Juan Antonio es_ES
dc.date.accessioned 2016-09-01T10:15:35Z
dc.date.available 2016-09-01T10:15:35Z
dc.date.issued 2014-03
dc.identifier.issn 0217-9849
dc.identifier.uri http://hdl.handle.net/10251/68516
dc.description.abstract The scattering properties of particles in a one-dimensional Fibonacci sequence based potential have been analyzed by means of the Transfer Matrix Method. The electronic band gaps are examined comparatively with those obtained using the corresponding periodic potentials. The reflection coefficient shows self-similar properties for the Fibonacci superlattices. Moreover, by using the generalized Bragg’s condition, the band gaps positions are derived from the golden mean involved in the design of the superlattice structure. es_ES
dc.description.sponsorship We acknowledge the financial support from Ministerio de Ciencia e Innovacion (grant FIS2011-23175), and Generalitat Valenciana (grant PROMETEO2009-077), Spain. en_EN
dc.language Inglés es_ES
dc.publisher World Scientific Publishing es_ES
dc.relation.ispartof Modern Physics Letters B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fibonacci es_ES
dc.subject Superlattices es_ES
dc.subject Quantum potentia es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Study on band gap structure of Fibonacci quantum superlattices by using the transfer matrix method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1142/S0217984914500535
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2011-23175/ES/DISEÑO Y REALIZACION DE ESTRUCTURAS DIFRACTIVAS APERIODICAS: NUEVAS LENTES OFTALMICAS Y OTRAS APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F077/ES/Grupo de fibras ópticas y procesado de señal/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ferrando Martín, V.; Castro Palacio, JC.; Marí Soucase, B.; Monsoriu Serra, JA. (2014). Study on band gap structure of Fibonacci quantum superlattices by using the transfer matrix method. Modern Physics Letters B. 28(7):14500531-14500539. https://doi.org/10.1142/S0217984914500535 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http:dx.doi.org/http://dx.doi.org/10.1142/S0217984914500535 es_ES
dc.description.upvformatpinicio 14500531 es_ES
dc.description.upvformatpfin 14500539 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 261869 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references B. R. Nag, Physics of Quantum Well Devices (Kluver Academic, Dordrecht, 2001) p. 312. es_ES
dc.description.references Roblin, P., & Rohdin, H. (2002). High-speed heterostructure devices. doi:10.1017/cbo9780511754593 es_ES
dc.description.references Kolbas, R. M., & Holonyak, N. (1984). Man‐made quantum wells: A new perspective on the finite square‐well problem. American Journal of Physics, 52(5), 431-437. doi:10.1119/1.13649 es_ES
dc.description.references Mazurczyk, R. (1999). Semiconductor Superlattices. Chaos, Solitons & Fractals, 10(12), 1971-1982. doi:10.1016/s0960-0779(98)00245-8 es_ES
dc.description.references Axel, F., & Terauchi, H. (1991). High-resolution x-ray-diffraction spectra of Thue-Morse GaAs-AlAs heterostructures: Towards a novel description of disorder. Physical Review Letters, 66(17), 2223-2226. doi:10.1103/physrevlett.66.2223 es_ES
dc.description.references Järrendahl, K., Dulea, M., Birch, J., & Sundgren, J.-E. (1995). X-ray diffraction from amorphous Ge/Si Cantor superlattices. Physical Review B, 51(12), 7621-7631. doi:10.1103/physrevb.51.7621 es_ES
dc.description.references Sánchez-Soto, L. L., Monzón, J. J., Barriuso, A. G., & Cariñena, J. F. (2012). The transfer matrix: A geometrical perspective. Physics Reports, 513(4), 191-227. doi:10.1016/j.physrep.2011.10.002 es_ES
dc.description.references KAYA, T. (2012). CORRELATED REDUCED TRANSFER MATRIX APPROACH FOR ISING MODEL. International Journal of Modern Physics B, 26(14), 1250085. doi:10.1142/s0217979212500853 es_ES
dc.description.references KAYA, T. (2012). IMPROVED MEAN-FIELD TRANSFER MATRIX MODEL FOR HYPERCUBIC ISING SYSTEMS. Modern Physics Letters B, 26(17), 1250111. doi:10.1142/s0217984912501114 es_ES
dc.description.references Monsoriu, J. A., Villatoro, F. R., Marín, M. J., Pérez, J., & Monreal, L. (2006). Quantum fractal superlattices. American Journal of Physics, 74(9), 831-836. doi:10.1119/1.2209242 es_ES
dc.description.references Monsoriu, J. A., Villatoro, F. R., Marín, M. J., Urchueguía, J. F., & Córdoba, P. F. de. (2005). A transfer matrix method for the analysis of fractal quantum potentials. European Journal of Physics, 26(4), 603-610. doi:10.1088/0143-0807/26/4/005 es_ES
dc.description.references Villatoro, F. R., & Monsoriu, J. A. (2008). Tunneling in quantum superlattices with variable lacunarity. Physics Letters A, 372(21), 3801-3807. doi:10.1016/j.physleta.2008.03.002 es_ES
dc.description.references CASTRO-PALACIO, J. C., VILLATORO, F. R., MENDOZA-YERO, O., VELÁZQUEZ-ABAD, L., & MONSORIU, J. A. (2012). SELF-SIMILAR BEHAVIOR IN SEMICONDUCTOR SUPERLATTICES. Fractals, 20(01), 89-95. doi:10.1142/s0218348x12500089 es_ES
dc.description.references Fleming, A. J. (2002). Plant mathematics and Fibonacci’s flowers. Nature, 418(6899), 723-723. doi:10.1038/418723a es_ES
dc.description.references Mahler, L., Tredicucci, A., Beltram, F., Walther, C., Faist, J., Beere, H. E., … Wiersma, D. S. (2010). Quasi-periodic distributed feedback laser. Nature Photonics, 4(3), 165-169. doi:10.1038/nphoton.2009.285 es_ES
dc.description.references N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976) p. 848. es_ES
dc.description.references Calatayud, A., Ferrando, V., Remón, L., Furlan, W. D., & Monsoriu, J. A. (2013). Twin axial vortices generated by Fibonacci lenses. Optics Express, 21(8), 10234. doi:10.1364/oe.21.010234 es_ES
dc.description.references Albuquerque, E. L., & Cottam, M. G. (2003). Theory of elementary excitations in quasiperiodic structures. Physics Reports, 376(4-5), 225-337. doi:10.1016/s0370-1573(02)00559-8 es_ES
dc.description.references Maciá, E. (2012). Exploiting aperiodic designs in nanophotonic devices. Reports on Progress in Physics, 75(3), 036502. doi:10.1088/0034-4885/75/3/036502 es_ES
dc.description.references Maciá, E. (2005). The role of aperiodic order in science and technology. Reports on Progress in Physics, 69(2), 397-441. doi:10.1088/0034-4885/69/2/r03 es_ES
dc.description.references Hsueh, W. J., Chang, C. H., Cheng, Y. H., & Wun, S. J. (2012). Effective Bragg conditions in a one-dimensional quasicrystal. Optics Express, 20(24), 26618. doi:10.1364/oe.20.026618 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem