- -

Rheological Aspects of Spanish Honeys

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Rheological Aspects of Spanish Honeys

Show full item record

Oroian, MA.; Amariei, S.; Escriche Roberto, MI.; Gutt, G. (2013). Rheological Aspects of Spanish Honeys. Food and Bioprocess Technology. 6(1):228-241. doi:10.1007/s11947-011-0730-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68630

Files in this item

Item Metadata

Title: Rheological Aspects of Spanish Honeys
Author: Oroian, Mircea Adrian Amariei, Sonia Escriche Roberto, Mª Isabel Gutt, Gheorghe
UPV Unit: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Issued date:
Abstract:
[EN] The purpose of this work was to investigate the rheological behavior of Spanish honeys under different conditions (at different temperatures and concentrations). All the samples were characterized to determine ...[+]
Subjects: Honey , Arrhenius model , Vogel Taumman Fulcher model , Concentration temperature model , Cox Merz rule
Copyrigths: Cerrado
Source:
Food and Bioprocess Technology. (issn: 1935-5130 )
DOI: 10.1007/s11947-011-0730-4
Publisher:
Springer Verlag (Germany)
Publisher version: https://dx.doi.org/10.1007/s11947-011-0730-4
Thanks:
This paper was supported by the project "Knowledge provocation and development through doctoral research PRO-DOCT contract no. POSDRU/88/1.5/S/52946", project co-funded by the European Social Fund through Sectoral Operational ...[+]
Type: Artículo

References

Abu-Jdayil, B., Al-Majeed Ghzawi, A., Al-Malah, K. I. M., & Zaitoun, S. J. (2002). Heat effect on rheology of light- and darkcolored honey. Journal of Food Engineering, 51(1), 33–38.

Ahmed, J., Ramaswamy, H. S., & Sashidhar, K. C. (2007). Rheological characteristics of tamarind (Tamarindus indica L.) juice concentrates, LWT. Food Science and Technology, 40(2), 225–231.

Ahmed, J., Prabhu, S. T., Raghavan, G. S. V., & Ngadi, M. (2007). Physico-chemical, rheological, calorimetric and dielectric behaviour of selected Indian honey. Journal of Food Engineering, 79, 1207–1213. [+]
Abu-Jdayil, B., Al-Majeed Ghzawi, A., Al-Malah, K. I. M., & Zaitoun, S. J. (2002). Heat effect on rheology of light- and darkcolored honey. Journal of Food Engineering, 51(1), 33–38.

Ahmed, J., Ramaswamy, H. S., & Sashidhar, K. C. (2007). Rheological characteristics of tamarind (Tamarindus indica L.) juice concentrates, LWT. Food Science and Technology, 40(2), 225–231.

Ahmed, J., Prabhu, S. T., Raghavan, G. S. V., & Ngadi, M. (2007). Physico-chemical, rheological, calorimetric and dielectric behaviour of selected Indian honey. Journal of Food Engineering, 79, 1207–1213.

Al-Malah, K. I. M., Abu-Jdayil, B., Zaitoun, S., & Ghzawi, A. A. M. (2001). Application of WLF and Arrhenius kinetics to rheology of selected dark-colored honey. Journal of Food Process Engineering, 24, 341–357.

Anklam, E. (1998). A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chemistry, 63, 549–562.

Assil, H. I., Sterling, R., & Sporns, P. (1991). Crystal control in processed liquid honey. Journal of Food Science, 56(4), 1034–1037. 1041.

Augusto, P. E. D., Falguera, V., Cristianini, M., & Ibarz, A. (2011). Viscoelastic properties of tomato juice: applicability of the Cox–Merz rule. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0655-y .

Baroni, M. V., Arrua, C., Nores, M. L., Fayé, P., Díaz, M., Chiabrando, G. A., & Wunderlin, D. A. (2009). Composition of honey from Córdoba (Argentina): assessment of north/south provenance by chemometrics. Food Chemistry, 114, 727–733.

Bhandari, B., D’Arcy, B., & Chow, S. (1999). Rheology of selected Australian honeys. Journal of Food Engineering, 41(1), 65–68.

Bistanzy, K. L., & Kokini, J. L. (1983). Comparison of steady shear rheological properties and small amplitude dynamic viscoelastic properties of fluid food materials. Journal of Texture Studies, 14, 113–124.

Bogdanov S., (2002) Harmonised methods of the international honey commission. Swiss Bee Research Centre, FAM, Liebefeld, CH-3003 Bern, Switzerland.

Chamberlain, E. K., & Rao, M. A. (1999). Rheological properties of acid converted waxy maize starches in water and 90% DMSO/10% water. Carbohydrate Polymers, 40, 251–260.

Chen, Y. W., Lin, C. H., Wu, F. Y., & Chen, H. H. (2009). Rheological properties of crystallized honey prepared by new type of nuclei. Journal of Food Process Engineering, 32, 512–527.

Chronakis, I. S., Doublier, J. L., & Piculell, L. (2000). Viscoelastic properties for kappa- and iota-carrageenan in aqueous NaI from the liquid-like to the solid-like behaviour. International Journal of Biological Macromolecules, 28(1), 1–14.

Codex Alimentarius. (1993). Standard for honey, ref. no. CL 1993/14, SH. Rome: Codex Alimentarius Commission FAO/WHO.

Codex Standard (Codex Alimentarius) 12–1981, Rev. 2 (2001) Revised codex standard for honey

Cohen, I., & Weihs, D. (2010). Rheology and microrheology of natural and reduced-calorie Israeli honeys as a model for high-viscosity Newtonian liquids. Journal of Food Engineering, 100(2), 366–371.

Corbella, E., & Cozzolino, D. (2006). Classification of the floral origin of Uruguayan honeys by chemical and physical characteristics combined with chemometics. LWT- Food Science and Technology, 39, 534–539.

Cox, W. P., & Merz, E. H. (1958). Correlation of dynamic and steady flow viscosities. Journal of Polymer Science, 28, 619–622.

Da Silva, J. A. L., & Rao, M. A. (1992). Viscoelastic properties of food hydrocolloid dispersions. In M. A. Rao & J. F. Steffe (Eds.), Viscoelastic properties of foods. London, UK: Elseiver.

Escriche, I., Visquert, M., Juan-Borras, M., & Fito, P. (2009). Influence of simulated industrial thermal treatments on the volatile fractionsof different varieties of honey. Food Chemistry, 112, 329–338.

European Commission Directive relating to honey (2001). 2001/110/CE of 02/12/2001.

Fallico, B., Zappalà, M., Arena, E., & Verzera, A. (2004). Effects of heating process on chemical composition and HMF levels in Sicilian monofloral honeys. Food Chemistry, 85(2), 305–313.

Fissore, E. N., Matkovic, L., Wider, E., Rojas, A. M., & Gerschenson, L. N. (2009). Rheological properties of pectin-enriched products isolated from butternut (Cucurbita moschata Duch ex Poiret). LWT- Food Science and Technology, 42(8), 1413–1421.

Giner, J., Ibarz, A., Garza, S., & Xhian-Quan, S. (1996). Rheology of clarified cherry juices. Journal of Food Enginnering, 30, 147–154.

Gómez Diaz, D., Navaza, J. M., & Quintans, L. C. (2009). Effect of temperature on the viscosity of honey. International Journal of Food Properties, 12(2), 396–404.

Gómez Díaz, D., Navaza, J. M., & Quintans, L. C. (2005). Rheological behaviour of Galician honeys. European Food Research and Technology, 222, 439–442.

Guinee, T. P., Auty, M. A. E., & Fenelon, M. A. (2000). The effect of fat content on the rheology, microstructure and heat-induced functional characteristics of Cheddar cheese. International Dairy Journal, 10, 277–288.

Hutchings, J. B. (1999). Food color and appearance (2nd ed.). Gaithersburg, Md: Aspen Publishers.

Ibarz, A., Vicente, M., & Graell, J. (1987). Rheological behavior of apple juice and pear juice and their concentrates. Journal of Food Engineering, 6, 257–267. doi: 10.1016/0260-8774(87)90013-6 .

Ibarz, A., Pagán, J., & Miguelsanz, R. (1992). Rheology of clarified fruit juices. II. Blackcurrant juices. Journal of Food Engineering, 15, 63–67. doi: 10.1016/0260-8774(92)90040-D .

Junzheng, P., & Changying, J. (1998). General rheological model for natural honeys in China. Journal of Food Engineering, 36(2), 165–168.

Juszczak, L., & Fortuna, T. (2006). Rheology of selected Polish honeys. Journal of Food Engineering, 73(1), 43–49.

Kahyaoglu, T., & Kaya, S. (2003). Effect of heat treatment and fat reduction on the rheological and functional properties of Gaziantep cheeese. International Dairy Journal, 13, 867–875.

Kang, K. M., & Yoo, B. (2008). Dynamic rheological properties of honeys at low temperatures as affected by moisture content and temperature. Food Science and Biotechnology, 17(1), 90–94.

Kaya, A., Ko, S., & Gunasekaran, S. (2008). Viscosity and color change during in situ solidification of grape pekmez. Food and Bioprocess Technology, 4(2), 241–246.

Kokini, J. L. (1992). Rheological properties of food. In D. R. Heldman & D. B. Lund (Eds.), Handbook of food engineering (pp. 1–38). New York: Marcel Dekker.

Kucuk, M., Kolayh, S., Karaoglu, S., Ulusoy, E., Baltaci, C., & Candan, F. (2007). Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chemistry, 100, 526–534.

Kumar, J. S., & Mandal, M. (2009). Rheology and thermal properties of marketed Indian honey. Nutrition and Food Science, 39(2), 111–117.

Lazaridou, A., Biliaderis, C. G., Bacandritsos, N., & Sabatini, A. G. (2004). Composition, thermal and rheological behaviour of selected Greek honeys. Journal of Food Engineering, 64(1), 9–21.

Mărghiţaş, L., Dezmirean, D., Moise, A., Bobis, O., Laslo, L., & Bogdanov, S. (2009). Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chemistry, 112, 863–867.

Mazzobre, M. F., Soto, G., Aguilera, J. M., & Buera, P. (2001). Crystallization kinetics of lactose in systems co-lyophilized with trehalose. Analysis by differential scanning calorimetry. Food Research International, 34(10), 903–911.

Mossel, B., Bhandari, B., D’Arcy, B., & Caffin, N. (2000). Use of Arrhenius model to predict rheological behaviour in some Australian honeys. Lebensmittel-Wissenschaft und Technologie, 33, 545–552.

Nanda, V., Sarkar, B. C., Sharma, H. K., & Bawa, A. S. (2003). Physico–chemical properties and estimation of mineral content in honey produced from different plants in Northern India. Journal of Food Compost. Anal, 16, 613–619.

Ollet, A. L., & Parker, R. (1995). The viscosity of supercooled fructose and its glass transition temperature. Journal of Texture Studies, 21, 355–362.

Ouchemoukh, S., Louaileche, H., & Schweitzer, P. (2007). Physicochemical characteristics and pollen spectrum of some Algerian honeys. Food Control, 18, 52–58.

Parker, R., & Ring, S. G. (1995). A theoretical analysis of diffusion controlled reactions in frozen solutions. CryoLetters, 16, 197–208.

Patil, U., & Muskan, K. (2009). Essentials of biotechnology. New Delhi, India: International Publishing House.

Persano-Oddo, L., Gioia-Piazza, M., & Zellini, G. (1995). Caratteristiche cromatiche dei mieli uniflorali. Apicoltura, 10, 109–120.

Rao, M. A., Cooley, H. J., & Vizali, A. A. (1984). Flow properties of concentrated juices at low temperatures. Food Technology, 38, 113–119.

Recondo, M. P., Elizalde, B. E., & Buera, M. P. (2006). Modelling temperature dependence of honey viscosity and of related supersaturated model carbohydrate systems. Journal of Food Engineering, 77(1), 126–134.

Saénz-Laín, C., & Gómez-Ferreras, C. (2000). Mieles españolas: características e identificación mediante el análisis del polen. Madrid, Spain: Mundi-Prensa.

Salinas, M. V., Zuleta, A., Ronayne, P., & Puppo, M. C. (2011). Wheat flour enriched with calcium and inulin: a study of hydration and rheological properties of dough. Food and Bioprocess Technologies. doi: 10.1007/s11947-011-0691-7 .

Samanalieva, J., & Senge, B. (2009). Analytical and rheological investigations into selected unifloral German honey. European Food Research and Technology, 229, 107–113.

Serrano, S., Villarejo, M., Espejo, R., & Jodral, M. (2004). Chemical and physical parameters of Andalusian honey: classification of citrus and eucalyptus honeys by discriminant analysis. Food Chemistry, 87, 619–625.

Sopade, P. A., Halley, P., Bhandari, B., D’Arcy, B., Doebler, C., & Caffin, N. (2002). Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys. Journal of Food Engineering, 56(1), 67–75.

Sopade, P. A., Halley, P. J., D’Arcy, B. R., Bhandari, B., & Caffin, N. (2004). Dynamic and steady-state rheology of Australian honeys at subzero temperatures. Journal of Food Process Engineering, 27(4), 284–309.

Soria, A. C., Gonzalez, M., de Lorenzo, C., Martínez-Castro, I., & Sanz, J. (2004). Characterization of artesanal honeys from Madrid (Central Spain) on the basis of their melissopalynological, physicochemical and volatile composition data. Food Chemistry, 85, 121–130.

Steffe, J. (1996). Rheological methods in food process engineering—second edition. USA: Freeman Press.

Steffolani, M. E., Ribotta, P. D., Perez, G. T., Puppo, M. C., & León, A. E. (2011). Use of enzymes to minimize dough freezing damage. Food and Bioprocess Technologies. doi: 10.1007/s11947-011-0538-2 .

Talens, P., Martinez-Navarrete, N., Fito, P., & Chiralt, A. (2001). Changes in optical and mechanical properties during osmodehydrofreezing of kiwi fruit. Innovative Food Science and Emerging Technologies, 3, 191–199.

Terrab, A., Gonzalez, G. A., Diez, M. J., & Heredia, F. J. (2003a). Mineral content and electrical conductivity of honeysproduced in Northewet Morocco and their contribution to the characterisation of unifloral honeys. Journal of the Science of Food and Agriculture, 83, 637–643.

Terrab, A., Gonzalez, G. A., Diez, M. J., & Heredia, F. J. (2003b). Characterisation of Moroccan unifloral honeys using multivariate analysis. European Food Research and Technology, 218, 88–95.

Tiziani, S., & Vodovotz, Y. (2005). Rheological effects of soy protein addition to tomato juice. Food Hydrocolloids, 19(1), 45–52.

Villegas, B., & Costell, E. (2007). Flow behaviour of inulin–milk beverages. Influence of inulin average chain length and milk fat content. International Dairy Journal, 17, 776–781.

White, J. W. (1975). Physical characteristics of honey. In E. Crane (Ed.), Honey: a comprehensive survey (pp. 207–239). London: Morrison and Gibs.

White, J. W., Jr. (1978). Honey. Advances in Food Research, 24, 287–274.

Witczak, M., Juszcak, L., & Galkowska, D. (2011). Non-Newtonian behaviour of heather honey. Journal of Food Engineering, 104(1), 532–537.

Yanniotis, S., Skaltsi, S., & Karaburnioti, S. (2006). Effect of moisture content on the viscosity of honey at different temperatures. Journal of Food Engineering, 72(4), 372–377.

Yaşar, K., Kahyaoglu, T., & Şahan, N. (2009). Dynamic rheological characterization of salep glucomannan/galactomannanbased milk beverages. Food Hydrocolloids, 23(5), 1305–1311.

Yoo, B. (2004). Effect of temperature on dynamic rheology of Korean honeys. Journal of Food Engineering, 65, 459–463.

Zaitoun, S., Ghzawi, A., Al-Malah, K. I. M., & Abu-Jdayil, B. (2001). Rheological properties of selected light colored Jordanian honey. International Journal of Food Properties, 4, 139–148.

[-]

This item appears in the following Collection(s)

Show full item record