- -

Rheological Aspects of Spanish Honeys

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rheological Aspects of Spanish Honeys

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Oroian, Mircea Adrian es_ES
dc.contributor.author Amariei, Sonia es_ES
dc.contributor.author Escriche Roberto, Mª Isabel es_ES
dc.contributor.author Gutt, Gheorghe es_ES
dc.date.accessioned 2016-09-02T12:44:10Z
dc.date.available 2016-09-02T12:44:10Z
dc.date.issued 2013-01
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/68630
dc.description.abstract [EN] The purpose of this work was to investigate the rheological behavior of Spanish honeys under different conditions (at different temperatures and concentrations). All the samples were characterized to determine their physicochemical (moisture, 0Brix, pH, ash, conductivity, color, total acidity, diastase activity, 5- hydroxymethylfurfural content, sugar content) and thermal (glass transition temperature) profiles. The honeys samples (80.4 82 0Brix) behaved as Newtonian fluid; as expected, their viscosity increased with the solid content and decreased with the temperature. Two experimental viscosity models (Arrhenius and Vogel Taumman Fulcher) were checked using the experimental data to correlate the influence of temperature on honey viscosity. A simplified model was proposed to describe the combined effect of the temperatures and concentrations (0Brix) on the viscosity of Spanish honeys. The dynamic viscosity and complex viscosity had the same magnitude at 40 °C, 45 °C, and 50 °C for of all the samples and the Cox Merz rule could be applied at these temperatures. es_ES
dc.description.sponsorship This paper was supported by the project "Knowledge provocation and development through doctoral research PRO-DOCT contract no. POSDRU/88/1.5/S/52946", project co-funded by the European Social Fund through Sectoral Operational Program Human Resources 2007-2013. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation project "Knowledge provocation and development through doctoral research PRO-DOCT" POSDRU/88/1.5/S/52946 es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Honey es_ES
dc.subject Arrhenius model es_ES
dc.subject Vogel Taumman Fulcher model es_ES
dc.subject Concentration temperature model es_ES
dc.subject Cox Merz rule es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Rheological Aspects of Spanish Honeys es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-011-0730-4
dc.relation.projectID info:eu-repo/grantAgreement/ESF//POSDRU%2F88%2F1.5%2FS%2F52946/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Oroian, MA.; Amariei, S.; Escriche Roberto, MI.; Gutt, G. (2013). Rheological Aspects of Spanish Honeys. Food and Bioprocess Technology. 6(1):228-241. doi:10.1007/s11947-011-0730-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s11947-011-0730-4 es_ES
dc.description.upvformatpinicio 228 es_ES
dc.description.upvformatpfin 241 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 234166 es_ES
dc.contributor.funder European Social Fund es_ES
dc.description.references Abu-Jdayil, B., Al-Majeed Ghzawi, A., Al-Malah, K. I. M., & Zaitoun, S. J. (2002). Heat effect on rheology of light- and darkcolored honey. Journal of Food Engineering, 51(1), 33–38. es_ES
dc.description.references Ahmed, J., Ramaswamy, H. S., & Sashidhar, K. C. (2007). Rheological characteristics of tamarind (Tamarindus indica L.) juice concentrates, LWT. Food Science and Technology, 40(2), 225–231. es_ES
dc.description.references Ahmed, J., Prabhu, S. T., Raghavan, G. S. V., & Ngadi, M. (2007). Physico-chemical, rheological, calorimetric and dielectric behaviour of selected Indian honey. Journal of Food Engineering, 79, 1207–1213. es_ES
dc.description.references Al-Malah, K. I. M., Abu-Jdayil, B., Zaitoun, S., & Ghzawi, A. A. M. (2001). Application of WLF and Arrhenius kinetics to rheology of selected dark-colored honey. Journal of Food Process Engineering, 24, 341–357. es_ES
dc.description.references Anklam, E. (1998). A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chemistry, 63, 549–562. es_ES
dc.description.references Assil, H. I., Sterling, R., & Sporns, P. (1991). Crystal control in processed liquid honey. Journal of Food Science, 56(4), 1034–1037. 1041. es_ES
dc.description.references Augusto, P. E. D., Falguera, V., Cristianini, M., & Ibarz, A. (2011). Viscoelastic properties of tomato juice: applicability of the Cox–Merz rule. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0655-y . es_ES
dc.description.references Baroni, M. V., Arrua, C., Nores, M. L., Fayé, P., Díaz, M., Chiabrando, G. A., & Wunderlin, D. A. (2009). Composition of honey from Córdoba (Argentina): assessment of north/south provenance by chemometrics. Food Chemistry, 114, 727–733. es_ES
dc.description.references Bhandari, B., D’Arcy, B., & Chow, S. (1999). Rheology of selected Australian honeys. Journal of Food Engineering, 41(1), 65–68. es_ES
dc.description.references Bistanzy, K. L., & Kokini, J. L. (1983). Comparison of steady shear rheological properties and small amplitude dynamic viscoelastic properties of fluid food materials. Journal of Texture Studies, 14, 113–124. es_ES
dc.description.references Bogdanov S., (2002) Harmonised methods of the international honey commission. Swiss Bee Research Centre, FAM, Liebefeld, CH-3003 Bern, Switzerland. es_ES
dc.description.references Chamberlain, E. K., & Rao, M. A. (1999). Rheological properties of acid converted waxy maize starches in water and 90% DMSO/10% water. Carbohydrate Polymers, 40, 251–260. es_ES
dc.description.references Chen, Y. W., Lin, C. H., Wu, F. Y., & Chen, H. H. (2009). Rheological properties of crystallized honey prepared by new type of nuclei. Journal of Food Process Engineering, 32, 512–527. es_ES
dc.description.references Chronakis, I. S., Doublier, J. L., & Piculell, L. (2000). Viscoelastic properties for kappa- and iota-carrageenan in aqueous NaI from the liquid-like to the solid-like behaviour. International Journal of Biological Macromolecules, 28(1), 1–14. es_ES
dc.description.references Codex Alimentarius. (1993). Standard for honey, ref. no. CL 1993/14, SH. Rome: Codex Alimentarius Commission FAO/WHO. es_ES
dc.description.references Codex Standard (Codex Alimentarius) 12–1981, Rev. 2 (2001) Revised codex standard for honey es_ES
dc.description.references Cohen, I., & Weihs, D. (2010). Rheology and microrheology of natural and reduced-calorie Israeli honeys as a model for high-viscosity Newtonian liquids. Journal of Food Engineering, 100(2), 366–371. es_ES
dc.description.references Corbella, E., & Cozzolino, D. (2006). Classification of the floral origin of Uruguayan honeys by chemical and physical characteristics combined with chemometics. LWT- Food Science and Technology, 39, 534–539. es_ES
dc.description.references Cox, W. P., & Merz, E. H. (1958). Correlation of dynamic and steady flow viscosities. Journal of Polymer Science, 28, 619–622. es_ES
dc.description.references Da Silva, J. A. L., & Rao, M. A. (1992). Viscoelastic properties of food hydrocolloid dispersions. In M. A. Rao & J. F. Steffe (Eds.), Viscoelastic properties of foods. London, UK: Elseiver. es_ES
dc.description.references Escriche, I., Visquert, M., Juan-Borras, M., & Fito, P. (2009). Influence of simulated industrial thermal treatments on the volatile fractionsof different varieties of honey. Food Chemistry, 112, 329–338. es_ES
dc.description.references European Commission Directive relating to honey (2001). 2001/110/CE of 02/12/2001. es_ES
dc.description.references Fallico, B., Zappalà, M., Arena, E., & Verzera, A. (2004). Effects of heating process on chemical composition and HMF levels in Sicilian monofloral honeys. Food Chemistry, 85(2), 305–313. es_ES
dc.description.references Fissore, E. N., Matkovic, L., Wider, E., Rojas, A. M., & Gerschenson, L. N. (2009). Rheological properties of pectin-enriched products isolated from butternut (Cucurbita moschata Duch ex Poiret). LWT- Food Science and Technology, 42(8), 1413–1421. es_ES
dc.description.references Giner, J., Ibarz, A., Garza, S., & Xhian-Quan, S. (1996). Rheology of clarified cherry juices. Journal of Food Enginnering, 30, 147–154. es_ES
dc.description.references Gómez Diaz, D., Navaza, J. M., & Quintans, L. C. (2009). Effect of temperature on the viscosity of honey. International Journal of Food Properties, 12(2), 396–404. es_ES
dc.description.references Gómez Díaz, D., Navaza, J. M., & Quintans, L. C. (2005). Rheological behaviour of Galician honeys. European Food Research and Technology, 222, 439–442. es_ES
dc.description.references Guinee, T. P., Auty, M. A. E., & Fenelon, M. A. (2000). The effect of fat content on the rheology, microstructure and heat-induced functional characteristics of Cheddar cheese. International Dairy Journal, 10, 277–288. es_ES
dc.description.references Hutchings, J. B. (1999). Food color and appearance (2nd ed.). Gaithersburg, Md: Aspen Publishers. es_ES
dc.description.references Ibarz, A., Vicente, M., & Graell, J. (1987). Rheological behavior of apple juice and pear juice and their concentrates. Journal of Food Engineering, 6, 257–267. doi: 10.1016/0260-8774(87)90013-6 . es_ES
dc.description.references Ibarz, A., Pagán, J., & Miguelsanz, R. (1992). Rheology of clarified fruit juices. II. Blackcurrant juices. Journal of Food Engineering, 15, 63–67. doi: 10.1016/0260-8774(92)90040-D . es_ES
dc.description.references Junzheng, P., & Changying, J. (1998). General rheological model for natural honeys in China. Journal of Food Engineering, 36(2), 165–168. es_ES
dc.description.references Juszczak, L., & Fortuna, T. (2006). Rheology of selected Polish honeys. Journal of Food Engineering, 73(1), 43–49. es_ES
dc.description.references Kahyaoglu, T., & Kaya, S. (2003). Effect of heat treatment and fat reduction on the rheological and functional properties of Gaziantep cheeese. International Dairy Journal, 13, 867–875. es_ES
dc.description.references Kang, K. M., & Yoo, B. (2008). Dynamic rheological properties of honeys at low temperatures as affected by moisture content and temperature. Food Science and Biotechnology, 17(1), 90–94. es_ES
dc.description.references Kaya, A., Ko, S., & Gunasekaran, S. (2008). Viscosity and color change during in situ solidification of grape pekmez. Food and Bioprocess Technology, 4(2), 241–246. es_ES
dc.description.references Kokini, J. L. (1992). Rheological properties of food. In D. R. Heldman & D. B. Lund (Eds.), Handbook of food engineering (pp. 1–38). New York: Marcel Dekker. es_ES
dc.description.references Kucuk, M., Kolayh, S., Karaoglu, S., Ulusoy, E., Baltaci, C., & Candan, F. (2007). Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chemistry, 100, 526–534. es_ES
dc.description.references Kumar, J. S., & Mandal, M. (2009). Rheology and thermal properties of marketed Indian honey. Nutrition and Food Science, 39(2), 111–117. es_ES
dc.description.references Lazaridou, A., Biliaderis, C. G., Bacandritsos, N., & Sabatini, A. G. (2004). Composition, thermal and rheological behaviour of selected Greek honeys. Journal of Food Engineering, 64(1), 9–21. es_ES
dc.description.references Mărghiţaş, L., Dezmirean, D., Moise, A., Bobis, O., Laslo, L., & Bogdanov, S. (2009). Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chemistry, 112, 863–867. es_ES
dc.description.references Mazzobre, M. F., Soto, G., Aguilera, J. M., & Buera, P. (2001). Crystallization kinetics of lactose in systems co-lyophilized with trehalose. Analysis by differential scanning calorimetry. Food Research International, 34(10), 903–911. es_ES
dc.description.references Mossel, B., Bhandari, B., D’Arcy, B., & Caffin, N. (2000). Use of Arrhenius model to predict rheological behaviour in some Australian honeys. Lebensmittel-Wissenschaft und Technologie, 33, 545–552. es_ES
dc.description.references Nanda, V., Sarkar, B. C., Sharma, H. K., & Bawa, A. S. (2003). Physico–chemical properties and estimation of mineral content in honey produced from different plants in Northern India. Journal of Food Compost. Anal, 16, 613–619. es_ES
dc.description.references Ollet, A. L., & Parker, R. (1995). The viscosity of supercooled fructose and its glass transition temperature. Journal of Texture Studies, 21, 355–362. es_ES
dc.description.references Ouchemoukh, S., Louaileche, H., & Schweitzer, P. (2007). Physicochemical characteristics and pollen spectrum of some Algerian honeys. Food Control, 18, 52–58. es_ES
dc.description.references Parker, R., & Ring, S. G. (1995). A theoretical analysis of diffusion controlled reactions in frozen solutions. CryoLetters, 16, 197–208. es_ES
dc.description.references Patil, U., & Muskan, K. (2009). Essentials of biotechnology. New Delhi, India: International Publishing House. es_ES
dc.description.references Persano-Oddo, L., Gioia-Piazza, M., & Zellini, G. (1995). Caratteristiche cromatiche dei mieli uniflorali. Apicoltura, 10, 109–120. es_ES
dc.description.references Rao, M. A., Cooley, H. J., & Vizali, A. A. (1984). Flow properties of concentrated juices at low temperatures. Food Technology, 38, 113–119. es_ES
dc.description.references Recondo, M. P., Elizalde, B. E., & Buera, M. P. (2006). Modelling temperature dependence of honey viscosity and of related supersaturated model carbohydrate systems. Journal of Food Engineering, 77(1), 126–134. es_ES
dc.description.references Saénz-Laín, C., & Gómez-Ferreras, C. (2000). Mieles españolas: características e identificación mediante el análisis del polen. Madrid, Spain: Mundi-Prensa. es_ES
dc.description.references Salinas, M. V., Zuleta, A., Ronayne, P., & Puppo, M. C. (2011). Wheat flour enriched with calcium and inulin: a study of hydration and rheological properties of dough. Food and Bioprocess Technologies. doi: 10.1007/s11947-011-0691-7 . es_ES
dc.description.references Samanalieva, J., & Senge, B. (2009). Analytical and rheological investigations into selected unifloral German honey. European Food Research and Technology, 229, 107–113. es_ES
dc.description.references Serrano, S., Villarejo, M., Espejo, R., & Jodral, M. (2004). Chemical and physical parameters of Andalusian honey: classification of citrus and eucalyptus honeys by discriminant analysis. Food Chemistry, 87, 619–625. es_ES
dc.description.references Sopade, P. A., Halley, P., Bhandari, B., D’Arcy, B., Doebler, C., & Caffin, N. (2002). Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys. Journal of Food Engineering, 56(1), 67–75. es_ES
dc.description.references Sopade, P. A., Halley, P. J., D’Arcy, B. R., Bhandari, B., & Caffin, N. (2004). Dynamic and steady-state rheology of Australian honeys at subzero temperatures. Journal of Food Process Engineering, 27(4), 284–309. es_ES
dc.description.references Soria, A. C., Gonzalez, M., de Lorenzo, C., Martínez-Castro, I., & Sanz, J. (2004). Characterization of artesanal honeys from Madrid (Central Spain) on the basis of their melissopalynological, physicochemical and volatile composition data. Food Chemistry, 85, 121–130. es_ES
dc.description.references Steffe, J. (1996). Rheological methods in food process engineering—second edition. USA: Freeman Press. es_ES
dc.description.references Steffolani, M. E., Ribotta, P. D., Perez, G. T., Puppo, M. C., & León, A. E. (2011). Use of enzymes to minimize dough freezing damage. Food and Bioprocess Technologies. doi: 10.1007/s11947-011-0538-2 . es_ES
dc.description.references Talens, P., Martinez-Navarrete, N., Fito, P., & Chiralt, A. (2001). Changes in optical and mechanical properties during osmodehydrofreezing of kiwi fruit. Innovative Food Science and Emerging Technologies, 3, 191–199. es_ES
dc.description.references Terrab, A., Gonzalez, G. A., Diez, M. J., & Heredia, F. J. (2003a). Mineral content and electrical conductivity of honeysproduced in Northewet Morocco and their contribution to the characterisation of unifloral honeys. Journal of the Science of Food and Agriculture, 83, 637–643. es_ES
dc.description.references Terrab, A., Gonzalez, G. A., Diez, M. J., & Heredia, F. J. (2003b). Characterisation of Moroccan unifloral honeys using multivariate analysis. European Food Research and Technology, 218, 88–95. es_ES
dc.description.references Tiziani, S., & Vodovotz, Y. (2005). Rheological effects of soy protein addition to tomato juice. Food Hydrocolloids, 19(1), 45–52. es_ES
dc.description.references Villegas, B., & Costell, E. (2007). Flow behaviour of inulin–milk beverages. Influence of inulin average chain length and milk fat content. International Dairy Journal, 17, 776–781. es_ES
dc.description.references White, J. W. (1975). Physical characteristics of honey. In E. Crane (Ed.), Honey: a comprehensive survey (pp. 207–239). London: Morrison and Gibs. es_ES
dc.description.references White, J. W., Jr. (1978). Honey. Advances in Food Research, 24, 287–274. es_ES
dc.description.references Witczak, M., Juszcak, L., & Galkowska, D. (2011). Non-Newtonian behaviour of heather honey. Journal of Food Engineering, 104(1), 532–537. es_ES
dc.description.references Yanniotis, S., Skaltsi, S., & Karaburnioti, S. (2006). Effect of moisture content on the viscosity of honey at different temperatures. Journal of Food Engineering, 72(4), 372–377. es_ES
dc.description.references Yaşar, K., Kahyaoglu, T., & Şahan, N. (2009). Dynamic rheological characterization of salep glucomannan/galactomannanbased milk beverages. Food Hydrocolloids, 23(5), 1305–1311. es_ES
dc.description.references Yoo, B. (2004). Effect of temperature on dynamic rheology of Korean honeys. Journal of Food Engineering, 65, 459–463. es_ES
dc.description.references Zaitoun, S., Ghzawi, A., Al-Malah, K. I. M., & Abu-Jdayil, B. (2001). Rheological properties of selected light colored Jordanian honey. International Journal of Food Properties, 4, 139–148. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem