- -

Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2-d+Co 2 mol %

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2-d+Co 2 mol %

Show full item record

Balaguer Ramirez, M.; Solis Díaz, C.; Roitsch, S.; Serra Alfaro, JM. (2014). Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2-d+Co 2 mol %. Dalton Transactions. 43(11):4305-4312. doi:10.1039/c3dt52167b

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68977

Files in this item

Item Metadata

Title: Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2-d+Co 2 mol %
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
10% Praseodymium doped ceria exhibits a combination of mixed ionic and electronic conductivity, redox catalytic properties and chemical compatibility with water and carbon dioxide at high temperatures. Minor additions of ...[+]
Subjects: Transport-Properties , oxygen permeability , Defect chemistry , Sintering aids , Ceria , Oxide , Ce0.8pr0.2o2-Delta , Vacancy , Ceo2
Copyrigths: Cerrado
Source:
Dalton Transactions. (issn: 1477-9226 )
DOI: 10.1039/c3dt52167b
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c3dt52167b
Thanks:
Funding from the Spanish Government (ENE2011-24761 and SEV-2012-0267 grants) and Helmholtz Association (MEM-BRAIN Portfolio) is kindly acknowledged. Dr J. L. Jorda contributed to this work with the HT-XRD measurements.
Type: Artículo

References

Engels, S., Beggel, F., Modigell, M., & Stadler, H. (2010). Simulation of a membrane unit for oxyfuel power plants under consideration of realistic BSCF membrane properties. Journal of Membrane Science, 359(1-2), 93-101. doi:10.1016/j.memsci.2010.01.048

Fagg, D. P., Shaula, A. L., Kharton, V. V., & Frade, J. R. (2007). High oxygen permeability in fluorite-type Ce0.8Pr0.2O2−δ via the use of sintering aids. Journal of Membrane Science, 299(1-2), 1-7. doi:10.1016/j.memsci.2007.04.020

Chatzichristodoulou, C., Hendriksen, P. V., Hagen, A., & Grivel, J.-C. (2008). Oxygen Nonstoichiometry and Defect Chemistry Modelling of Ce0.8PrxTb0.2-xO2-δ. ECS Transactions. doi:10.1149/1.3050406 [+]
Engels, S., Beggel, F., Modigell, M., & Stadler, H. (2010). Simulation of a membrane unit for oxyfuel power plants under consideration of realistic BSCF membrane properties. Journal of Membrane Science, 359(1-2), 93-101. doi:10.1016/j.memsci.2010.01.048

Fagg, D. P., Shaula, A. L., Kharton, V. V., & Frade, J. R. (2007). High oxygen permeability in fluorite-type Ce0.8Pr0.2O2−δ via the use of sintering aids. Journal of Membrane Science, 299(1-2), 1-7. doi:10.1016/j.memsci.2007.04.020

Chatzichristodoulou, C., Hendriksen, P. V., Hagen, A., & Grivel, J.-C. (2008). Oxygen Nonstoichiometry and Defect Chemistry Modelling of Ce0.8PrxTb0.2-xO2-δ. ECS Transactions. doi:10.1149/1.3050406

Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ+ Co (x= 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w

Chatzichristodoulou, C., Hendriksen, P. V., & Hagen, A. (2010). Defect Chemistry and Thermomechanical Properties of Ce[sub 0.8]Pr[sub x]Tb[sub 0.2−x]O[sub 2−δ]. Journal of The Electrochemical Society, 157(2), B299. doi:10.1149/1.3270475

NICHOLAS, J., & DEJONGHE, L. (2007). Prediction and evaluation of sintering aids for Cerium Gadolinium Oxide. Solid State Ionics, 178(19-20), 1187-1194. doi:10.1016/j.ssi.2007.05.019

Fagg, D. P., García-Martin, S., Kharton, V. V., & Frade, J. R. (2009). Transport Properties of Fluorite-Type Ce0.8Pr0.2O2−δ: Optimization via the Use of Cobalt Oxide Sintering Aid. Chemistry of Materials, 21(2), 381-391. doi:10.1021/cm802708a

Yan, R., Chu, F., Ma, Q., Liu, X., & Meng, G. (2006). Sintering kinetics of samarium doped ceria with addition of cobalt oxide. Materials Letters, 60(29-30), 3605-3609. doi:10.1016/j.matlet.2006.03.069

Pikalova, E. Y., Demina, A. N., Demin, A. K., Murashkina, A. A., Sopernikov, V. E., & Esina, N. O. (2007). Effect of doping with Co2O3, TiO2, Fe2O3, and Mn2O3 on the properties of Ce0.8Gd0.2O2−δ. Inorganic Materials, 43(7), 735-742. doi:10.1134/s0020168507070126

Kumar, A., Babu, S., Karakoti, A. S., Schulte, A., & Seal, S. (2009). Luminescence Properties of Europium-Doped Cerium Oxide Nanoparticles: Role of Vacancy and Oxidation States. Langmuir, 25(18), 10998-11007. doi:10.1021/la901298q

Hull, S., Norberg, S. T., Ahmed, I., Eriksson, S. G., Marrocchelli, D., & Madden, P. A. (2009). Oxygen vacancy ordering within anion-deficient Ceria. Journal of Solid State Chemistry, 182(10), 2815-2821. doi:10.1016/j.jssc.2009.07.044

Zhang, T., Hing, P., Huang, H., & Kilner, J. (2002). Sintering and grain growth of CoO-doped CeO 2 ceramics. Journal of the European Ceramic Society, 22(1), 27-34. doi:10.1016/s0955-2219(01)00240-0

Fagg, D. P., Marozau, I. P., Shaula, A. L., Kharton, V. V., & Frade, J. R. (2006). Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8−xPr0.2O2−δ, x=0, 0.15, 0.2. Journal of Solid State Chemistry, 179(11), 3347-3356. doi:10.1016/j.jssc.2006.06.028

Chatzichristodoulou, C., & Hendriksen, P. V. (2010). Oxygen Nonstoichiometry and Defect Chemistry Modeling of Ce[sub 0.8]Pr[sub 0.2]O[sub 2−δ]. Journal of The Electrochemical Society, 157(4), B481. doi:10.1149/1.3288241

Reddy, B. M., Saikia, P., Bharali, P., Park, S.-E., Muhler, M., & Grünert, W. (2009). Physicochemical Characteristics and Catalytic Activity of Alumina-Supported Nanosized Ceria−Terbia Solid Solutions. The Journal of Physical Chemistry C, 113(6), 2452-2462. doi:10.1021/jp809837g

Ayawanna, J., Wattanasiriwech, D., Wattanasiriwech, S., & Aungkavattana, P. (2009). Effects of cobalt metal addition on sintering and ionic conductivity of Sm(Y)-doped ceria solid electrolyte for SOFC. Solid State Ionics, 180(26-27), 1388-1394. doi:10.1016/j.ssi.2009.08.005

Duncan, K. L., Wang, Y., Bishop, S. R., Ebrahimi, F., & Wachsman, E. D. (2007). The role of point defects in the physical properties of nonstoichiometric ceria. Journal of Applied Physics, 101(4), 044906. doi:10.1063/1.2559601

Tang, C.-W., Wang, C.-B., & Chien, S.-H. (2008). Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochimica Acta, 473(1-2), 68-73. doi:10.1016/j.tca.2008.04.015

Balaguer, M., Solís, C., & Serra, J. M. (2012). Structural–Transport Properties Relationships on Ce1–xLnxO2−δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. The Journal of Physical Chemistry C, 116(14), 7975-7982. doi:10.1021/jp211594d

Göbel, M. C., Gregori, G., Guo, X., & Maier, J. (2010). Boundary effects on the electrical conductivity of pure and doped cerium oxide thin films. Physical Chemistry Chemical Physics, 12(42), 14351. doi:10.1039/c0cp00385a

Lupetin, P., Giannici, F., Gregori, G., Martorana, A., & Maier, J. (2012). Effects of Grain Boundary Decoration on the Electrical Conduction of Nanocrystalline CeO2. Journal of The Electrochemical Society, 159(4), B417-B425. doi:10.1149/2.064204jes

Fagg, D. P., Pérez-Coll, D., Núñez, P., Frade, J. R., Shaula, A. L., Yaremchenko, A. A., & Kharton, V. V. (2009). Ceria based mixed conductors with adjusted electronic conductivity in the bulk and/or along grain boundaries. Solid State Ionics, 180(11-13), 896-899. doi:10.1016/j.ssi.2009.02.024

Martin, M. (2003). Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size. Solid State Ionics, 161(1-2), 67-79. doi:10.1016/s0167-2738(03)00265-0

Stefanik, T. S., & Tuller, H. L. (2001). Ceria-based gas sensors. Journal of the European Ceramic Society, 21(10-11), 1967-1970. doi:10.1016/s0955-2219(01)00152-2

Bishop, S. R., Stefanik, T. S., & Tuller, H. L. (2011). Electrical conductivity and defect equilibria of Pr0.1Ce0.9O2−δ. Physical Chemistry Chemical Physics, 13(21), 10165. doi:10.1039/c0cp02920c

Pérez-Coll, D., Ruiz-Morales, J. C., Marrero-López, D., Núñez, P., & Frade, J. R. (2009). Effect of sintering additive and low temperature on the electrode polarization of CGO. Journal of Alloys and Compounds, 467(1-2), 533-538. doi:10.1016/j.jallcom.2007.12.039

[-]

This item appears in the following Collection(s)

Show full item record