- -

Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2-d+Co 2 mol %

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2-d+Co 2 mol %

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Balaguer Ramírez, María es_ES
dc.contributor.author Solis Díaz, Cecilia es_ES
dc.contributor.author Roitsch, Stefan es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2016-09-07T10:20:22Z
dc.date.available 2016-09-07T10:20:22Z
dc.date.issued 2014
dc.identifier.issn 1477-9226
dc.identifier.uri http://hdl.handle.net/10251/68977
dc.description.abstract 10% Praseodymium doped ceria exhibits a combination of mixed ionic and electronic conductivity, redox catalytic properties and chemical compatibility with water and carbon dioxide at high temperatures. Minor additions of cobalt oxide have been demonstrated to act as a sintering aid as well as an effective promoter of the electronic conduction. However, an excess of sintering temperature causes cobalt aggregation into the grain boundaries as inferred from FE-SEM/EDX and TEM analysis. The redox behaviour of the materials was studied by means of temperature programmed desorption (TPD) and reduction (TPR). This work shows the systematic study of sintering conditions in order to understand the evolution of the material microstructure, grain boundaries and the role of cobalt in this complex system. The final purpose of the work is to improve both electronic and oxygen ion transport properties for their potential application as oxygen-transport membranes and solid oxide fuel cell components. The sample sintered at 1000 degrees C exhibited the highest total conductivity at high temperatures, which is principally related to the improvement in the electronic conductivity through the grain boundary network. es_ES
dc.description.sponsorship Funding from the Spanish Government (ENE2011-24761 and SEV-2012-0267 grants) and Helmholtz Association (MEM-BRAIN Portfolio) is kindly acknowledged. Dr J. L. Jorda contributed to this work with the HT-XRD measurements. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Dalton Transactions es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Transport-Properties es_ES
dc.subject oxygen permeability es_ES
dc.subject Defect chemistry es_ES
dc.subject Sintering aids es_ES
dc.subject Ceria es_ES
dc.subject Oxide es_ES
dc.subject Ce0.8pr0.2o2-Delta es_ES
dc.subject Vacancy es_ES
dc.subject Ceo2 es_ES
dc.title Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2-d+Co 2 mol % es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3dt52167b
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//ENE2011-24761/ES/DESARROLLO DE NUEVOS DISPOSITIVOS IONICOS PARA LA PRODUCCION EFICIENTE Y SOSTENIBLE DE ENERGIA Y PRODUCTOS QUIMICOS%2FCOMBUSTIBLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Balaguer Ramírez, M.; Solis Díaz, C.; Roitsch, S.; Serra Alfaro, JM. (2014). Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2-d+Co 2 mol %. Dalton Transactions. 43(11):4305-4312. https://doi.org/10.1039/c3dt52167b es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3dt52167b es_ES
dc.description.upvformatpinicio 4305 es_ES
dc.description.upvformatpfin 4312 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 257394 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Helmholtz Association of German Research Centers es_ES
dc.description.references Engels, S., Beggel, F., Modigell, M., & Stadler, H. (2010). Simulation of a membrane unit for oxyfuel power plants under consideration of realistic BSCF membrane properties. Journal of Membrane Science, 359(1-2), 93-101. doi:10.1016/j.memsci.2010.01.048 es_ES
dc.description.references Fagg, D. P., Shaula, A. L., Kharton, V. V., & Frade, J. R. (2007). High oxygen permeability in fluorite-type Ce0.8Pr0.2O2−δ via the use of sintering aids. Journal of Membrane Science, 299(1-2), 1-7. doi:10.1016/j.memsci.2007.04.020 es_ES
dc.description.references Chatzichristodoulou, C., Hendriksen, P. V., Hagen, A., & Grivel, J.-C. (2008). Oxygen Nonstoichiometry and Defect Chemistry Modelling of Ce0.8PrxTb0.2-xO2-δ. ECS Transactions. doi:10.1149/1.3050406 es_ES
dc.description.references Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ+ Co (x= 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w es_ES
dc.description.references Chatzichristodoulou, C., Hendriksen, P. V., & Hagen, A. (2010). Defect Chemistry and Thermomechanical Properties of Ce[sub 0.8]Pr[sub x]Tb[sub 0.2−x]O[sub 2−δ]. Journal of The Electrochemical Society, 157(2), B299. doi:10.1149/1.3270475 es_ES
dc.description.references NICHOLAS, J., & DEJONGHE, L. (2007). Prediction and evaluation of sintering aids for Cerium Gadolinium Oxide. Solid State Ionics, 178(19-20), 1187-1194. doi:10.1016/j.ssi.2007.05.019 es_ES
dc.description.references Fagg, D. P., García-Martin, S., Kharton, V. V., & Frade, J. R. (2009). Transport Properties of Fluorite-Type Ce0.8Pr0.2O2−δ: Optimization via the Use of Cobalt Oxide Sintering Aid. Chemistry of Materials, 21(2), 381-391. doi:10.1021/cm802708a es_ES
dc.description.references Yan, R., Chu, F., Ma, Q., Liu, X., & Meng, G. (2006). Sintering kinetics of samarium doped ceria with addition of cobalt oxide. Materials Letters, 60(29-30), 3605-3609. doi:10.1016/j.matlet.2006.03.069 es_ES
dc.description.references Pikalova, E. Y., Demina, A. N., Demin, A. K., Murashkina, A. A., Sopernikov, V. E., & Esina, N. O. (2007). Effect of doping with Co2O3, TiO2, Fe2O3, and Mn2O3 on the properties of Ce0.8Gd0.2O2−δ. Inorganic Materials, 43(7), 735-742. doi:10.1134/s0020168507070126 es_ES
dc.description.references Kumar, A., Babu, S., Karakoti, A. S., Schulte, A., & Seal, S. (2009). Luminescence Properties of Europium-Doped Cerium Oxide Nanoparticles: Role of Vacancy and Oxidation States. Langmuir, 25(18), 10998-11007. doi:10.1021/la901298q es_ES
dc.description.references Hull, S., Norberg, S. T., Ahmed, I., Eriksson, S. G., Marrocchelli, D., & Madden, P. A. (2009). Oxygen vacancy ordering within anion-deficient Ceria. Journal of Solid State Chemistry, 182(10), 2815-2821. doi:10.1016/j.jssc.2009.07.044 es_ES
dc.description.references Zhang, T., Hing, P., Huang, H., & Kilner, J. (2002). Sintering and grain growth of CoO-doped CeO 2 ceramics. Journal of the European Ceramic Society, 22(1), 27-34. doi:10.1016/s0955-2219(01)00240-0 es_ES
dc.description.references Fagg, D. P., Marozau, I. P., Shaula, A. L., Kharton, V. V., & Frade, J. R. (2006). Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8−xPr0.2O2−δ, x=0, 0.15, 0.2. Journal of Solid State Chemistry, 179(11), 3347-3356. doi:10.1016/j.jssc.2006.06.028 es_ES
dc.description.references Chatzichristodoulou, C., & Hendriksen, P. V. (2010). Oxygen Nonstoichiometry and Defect Chemistry Modeling of Ce[sub 0.8]Pr[sub 0.2]O[sub 2−δ]. Journal of The Electrochemical Society, 157(4), B481. doi:10.1149/1.3288241 es_ES
dc.description.references Reddy, B. M., Saikia, P., Bharali, P., Park, S.-E., Muhler, M., & Grünert, W. (2009). Physicochemical Characteristics and Catalytic Activity of Alumina-Supported Nanosized Ceria−Terbia Solid Solutions. The Journal of Physical Chemistry C, 113(6), 2452-2462. doi:10.1021/jp809837g es_ES
dc.description.references Ayawanna, J., Wattanasiriwech, D., Wattanasiriwech, S., & Aungkavattana, P. (2009). Effects of cobalt metal addition on sintering and ionic conductivity of Sm(Y)-doped ceria solid electrolyte for SOFC. Solid State Ionics, 180(26-27), 1388-1394. doi:10.1016/j.ssi.2009.08.005 es_ES
dc.description.references Duncan, K. L., Wang, Y., Bishop, S. R., Ebrahimi, F., & Wachsman, E. D. (2007). The role of point defects in the physical properties of nonstoichiometric ceria. Journal of Applied Physics, 101(4), 044906. doi:10.1063/1.2559601 es_ES
dc.description.references Tang, C.-W., Wang, C.-B., & Chien, S.-H. (2008). Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochimica Acta, 473(1-2), 68-73. doi:10.1016/j.tca.2008.04.015 es_ES
dc.description.references Balaguer, M., Solís, C., & Serra, J. M. (2012). Structural–Transport Properties Relationships on Ce1–xLnxO2−δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. The Journal of Physical Chemistry C, 116(14), 7975-7982. doi:10.1021/jp211594d es_ES
dc.description.references Göbel, M. C., Gregori, G., Guo, X., & Maier, J. (2010). Boundary effects on the electrical conductivity of pure and doped cerium oxide thin films. Physical Chemistry Chemical Physics, 12(42), 14351. doi:10.1039/c0cp00385a es_ES
dc.description.references Lupetin, P., Giannici, F., Gregori, G., Martorana, A., & Maier, J. (2012). Effects of Grain Boundary Decoration on the Electrical Conduction of Nanocrystalline CeO2. Journal of The Electrochemical Society, 159(4), B417-B425. doi:10.1149/2.064204jes es_ES
dc.description.references Fagg, D. P., Pérez-Coll, D., Núñez, P., Frade, J. R., Shaula, A. L., Yaremchenko, A. A., & Kharton, V. V. (2009). Ceria based mixed conductors with adjusted electronic conductivity in the bulk and/or along grain boundaries. Solid State Ionics, 180(11-13), 896-899. doi:10.1016/j.ssi.2009.02.024 es_ES
dc.description.references Martin, M. (2003). Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size. Solid State Ionics, 161(1-2), 67-79. doi:10.1016/s0167-2738(03)00265-0 es_ES
dc.description.references Stefanik, T. S., & Tuller, H. L. (2001). Ceria-based gas sensors. Journal of the European Ceramic Society, 21(10-11), 1967-1970. doi:10.1016/s0955-2219(01)00152-2 es_ES
dc.description.references Bishop, S. R., Stefanik, T. S., & Tuller, H. L. (2011). Electrical conductivity and defect equilibria of Pr0.1Ce0.9O2−δ. Physical Chemistry Chemical Physics, 13(21), 10165. doi:10.1039/c0cp02920c es_ES
dc.description.references Pérez-Coll, D., Ruiz-Morales, J. C., Marrero-López, D., Núñez, P., & Frade, J. R. (2009). Effect of sintering additive and low temperature on the electrode polarization of CGO. Journal of Alloys and Compounds, 467(1-2), 533-538. doi:10.1016/j.jallcom.2007.12.039 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem