Mostrar el registro sencillo del ítem
dc.contributor.author | Balaguer Ramírez, María | es_ES |
dc.contributor.author | Solis Díaz, Cecilia | es_ES |
dc.contributor.author | Roitsch, Stefan | es_ES |
dc.contributor.author | Serra Alfaro, José Manuel | es_ES |
dc.date.accessioned | 2016-09-07T10:20:22Z | |
dc.date.available | 2016-09-07T10:20:22Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1477-9226 | |
dc.identifier.uri | http://hdl.handle.net/10251/68977 | |
dc.description.abstract | 10% Praseodymium doped ceria exhibits a combination of mixed ionic and electronic conductivity, redox catalytic properties and chemical compatibility with water and carbon dioxide at high temperatures. Minor additions of cobalt oxide have been demonstrated to act as a sintering aid as well as an effective promoter of the electronic conduction. However, an excess of sintering temperature causes cobalt aggregation into the grain boundaries as inferred from FE-SEM/EDX and TEM analysis. The redox behaviour of the materials was studied by means of temperature programmed desorption (TPD) and reduction (TPR). This work shows the systematic study of sintering conditions in order to understand the evolution of the material microstructure, grain boundaries and the role of cobalt in this complex system. The final purpose of the work is to improve both electronic and oxygen ion transport properties for their potential application as oxygen-transport membranes and solid oxide fuel cell components. The sample sintered at 1000 degrees C exhibited the highest total conductivity at high temperatures, which is principally related to the improvement in the electronic conductivity through the grain boundary network. | es_ES |
dc.description.sponsorship | Funding from the Spanish Government (ENE2011-24761 and SEV-2012-0267 grants) and Helmholtz Association (MEM-BRAIN Portfolio) is kindly acknowledged. Dr J. L. Jorda contributed to this work with the HT-XRD measurements. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Dalton Transactions | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Transport-Properties | es_ES |
dc.subject | oxygen permeability | es_ES |
dc.subject | Defect chemistry | es_ES |
dc.subject | Sintering aids | es_ES |
dc.subject | Ceria | es_ES |
dc.subject | Oxide | es_ES |
dc.subject | Ce0.8pr0.2o2-Delta | es_ES |
dc.subject | Vacancy | es_ES |
dc.subject | Ceo2 | es_ES |
dc.title | Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2-d+Co 2 mol % | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c3dt52167b | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//ENE2011-24761/ES/DESARROLLO DE NUEVOS DISPOSITIVOS IONICOS PARA LA PRODUCCION EFICIENTE Y SOSTENIBLE DE ENERGIA Y PRODUCTOS QUIMICOS%2FCOMBUSTIBLES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Balaguer Ramírez, M.; Solis Díaz, C.; Roitsch, S.; Serra Alfaro, JM. (2014). Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2-d+Co 2 mol %. Dalton Transactions. 43(11):4305-4312. https://doi.org/10.1039/c3dt52167b | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c3dt52167b | es_ES |
dc.description.upvformatpinicio | 4305 | es_ES |
dc.description.upvformatpfin | 4312 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.senia | 257394 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Helmholtz Association of German Research Centers | es_ES |
dc.description.references | Engels, S., Beggel, F., Modigell, M., & Stadler, H. (2010). Simulation of a membrane unit for oxyfuel power plants under consideration of realistic BSCF membrane properties. Journal of Membrane Science, 359(1-2), 93-101. doi:10.1016/j.memsci.2010.01.048 | es_ES |
dc.description.references | Fagg, D. P., Shaula, A. L., Kharton, V. V., & Frade, J. R. (2007). High oxygen permeability in fluorite-type Ce0.8Pr0.2O2−δ via the use of sintering aids. Journal of Membrane Science, 299(1-2), 1-7. doi:10.1016/j.memsci.2007.04.020 | es_ES |
dc.description.references | Chatzichristodoulou, C., Hendriksen, P. V., Hagen, A., & Grivel, J.-C. (2008). Oxygen Nonstoichiometry and Defect Chemistry Modelling of Ce0.8PrxTb0.2-xO2-δ. ECS Transactions. doi:10.1149/1.3050406 | es_ES |
dc.description.references | Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ+ Co (x= 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w | es_ES |
dc.description.references | Chatzichristodoulou, C., Hendriksen, P. V., & Hagen, A. (2010). Defect Chemistry and Thermomechanical Properties of Ce[sub 0.8]Pr[sub x]Tb[sub 0.2−x]O[sub 2−δ]. Journal of The Electrochemical Society, 157(2), B299. doi:10.1149/1.3270475 | es_ES |
dc.description.references | NICHOLAS, J., & DEJONGHE, L. (2007). Prediction and evaluation of sintering aids for Cerium Gadolinium Oxide. Solid State Ionics, 178(19-20), 1187-1194. doi:10.1016/j.ssi.2007.05.019 | es_ES |
dc.description.references | Fagg, D. P., García-Martin, S., Kharton, V. V., & Frade, J. R. (2009). Transport Properties of Fluorite-Type Ce0.8Pr0.2O2−δ: Optimization via the Use of Cobalt Oxide Sintering Aid. Chemistry of Materials, 21(2), 381-391. doi:10.1021/cm802708a | es_ES |
dc.description.references | Yan, R., Chu, F., Ma, Q., Liu, X., & Meng, G. (2006). Sintering kinetics of samarium doped ceria with addition of cobalt oxide. Materials Letters, 60(29-30), 3605-3609. doi:10.1016/j.matlet.2006.03.069 | es_ES |
dc.description.references | Pikalova, E. Y., Demina, A. N., Demin, A. K., Murashkina, A. A., Sopernikov, V. E., & Esina, N. O. (2007). Effect of doping with Co2O3, TiO2, Fe2O3, and Mn2O3 on the properties of Ce0.8Gd0.2O2−δ. Inorganic Materials, 43(7), 735-742. doi:10.1134/s0020168507070126 | es_ES |
dc.description.references | Kumar, A., Babu, S., Karakoti, A. S., Schulte, A., & Seal, S. (2009). Luminescence Properties of Europium-Doped Cerium Oxide Nanoparticles: Role of Vacancy and Oxidation States. Langmuir, 25(18), 10998-11007. doi:10.1021/la901298q | es_ES |
dc.description.references | Hull, S., Norberg, S. T., Ahmed, I., Eriksson, S. G., Marrocchelli, D., & Madden, P. A. (2009). Oxygen vacancy ordering within anion-deficient Ceria. Journal of Solid State Chemistry, 182(10), 2815-2821. doi:10.1016/j.jssc.2009.07.044 | es_ES |
dc.description.references | Zhang, T., Hing, P., Huang, H., & Kilner, J. (2002). Sintering and grain growth of CoO-doped CeO 2 ceramics. Journal of the European Ceramic Society, 22(1), 27-34. doi:10.1016/s0955-2219(01)00240-0 | es_ES |
dc.description.references | Fagg, D. P., Marozau, I. P., Shaula, A. L., Kharton, V. V., & Frade, J. R. (2006). Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8−xPr0.2O2−δ, x=0, 0.15, 0.2. Journal of Solid State Chemistry, 179(11), 3347-3356. doi:10.1016/j.jssc.2006.06.028 | es_ES |
dc.description.references | Chatzichristodoulou, C., & Hendriksen, P. V. (2010). Oxygen Nonstoichiometry and Defect Chemistry Modeling of Ce[sub 0.8]Pr[sub 0.2]O[sub 2−δ]. Journal of The Electrochemical Society, 157(4), B481. doi:10.1149/1.3288241 | es_ES |
dc.description.references | Reddy, B. M., Saikia, P., Bharali, P., Park, S.-E., Muhler, M., & Grünert, W. (2009). Physicochemical Characteristics and Catalytic Activity of Alumina-Supported Nanosized Ceria−Terbia Solid Solutions. The Journal of Physical Chemistry C, 113(6), 2452-2462. doi:10.1021/jp809837g | es_ES |
dc.description.references | Ayawanna, J., Wattanasiriwech, D., Wattanasiriwech, S., & Aungkavattana, P. (2009). Effects of cobalt metal addition on sintering and ionic conductivity of Sm(Y)-doped ceria solid electrolyte for SOFC. Solid State Ionics, 180(26-27), 1388-1394. doi:10.1016/j.ssi.2009.08.005 | es_ES |
dc.description.references | Duncan, K. L., Wang, Y., Bishop, S. R., Ebrahimi, F., & Wachsman, E. D. (2007). The role of point defects in the physical properties of nonstoichiometric ceria. Journal of Applied Physics, 101(4), 044906. doi:10.1063/1.2559601 | es_ES |
dc.description.references | Tang, C.-W., Wang, C.-B., & Chien, S.-H. (2008). Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochimica Acta, 473(1-2), 68-73. doi:10.1016/j.tca.2008.04.015 | es_ES |
dc.description.references | Balaguer, M., Solís, C., & Serra, J. M. (2012). Structural–Transport Properties Relationships on Ce1–xLnxO2−δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. The Journal of Physical Chemistry C, 116(14), 7975-7982. doi:10.1021/jp211594d | es_ES |
dc.description.references | Göbel, M. C., Gregori, G., Guo, X., & Maier, J. (2010). Boundary effects on the electrical conductivity of pure and doped cerium oxide thin films. Physical Chemistry Chemical Physics, 12(42), 14351. doi:10.1039/c0cp00385a | es_ES |
dc.description.references | Lupetin, P., Giannici, F., Gregori, G., Martorana, A., & Maier, J. (2012). Effects of Grain Boundary Decoration on the Electrical Conduction of Nanocrystalline CeO2. Journal of The Electrochemical Society, 159(4), B417-B425. doi:10.1149/2.064204jes | es_ES |
dc.description.references | Fagg, D. P., Pérez-Coll, D., Núñez, P., Frade, J. R., Shaula, A. L., Yaremchenko, A. A., & Kharton, V. V. (2009). Ceria based mixed conductors with adjusted electronic conductivity in the bulk and/or along grain boundaries. Solid State Ionics, 180(11-13), 896-899. doi:10.1016/j.ssi.2009.02.024 | es_ES |
dc.description.references | Martin, M. (2003). Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size. Solid State Ionics, 161(1-2), 67-79. doi:10.1016/s0167-2738(03)00265-0 | es_ES |
dc.description.references | Stefanik, T. S., & Tuller, H. L. (2001). Ceria-based gas sensors. Journal of the European Ceramic Society, 21(10-11), 1967-1970. doi:10.1016/s0955-2219(01)00152-2 | es_ES |
dc.description.references | Bishop, S. R., Stefanik, T. S., & Tuller, H. L. (2011). Electrical conductivity and defect equilibria of Pr0.1Ce0.9O2−δ. Physical Chemistry Chemical Physics, 13(21), 10165. doi:10.1039/c0cp02920c | es_ES |
dc.description.references | Pérez-Coll, D., Ruiz-Morales, J. C., Marrero-López, D., Núñez, P., & Frade, J. R. (2009). Effect of sintering additive and low temperature on the electrode polarization of CGO. Journal of Alloys and Compounds, 467(1-2), 533-538. doi:10.1016/j.jallcom.2007.12.039 | es_ES |