- -

Identification of the essential phosphoglycerate dehydrogenase isoform EDA9 as the essential gene for embryo and male gametophyte development in Arabidopsis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Identification of the essential phosphoglycerate dehydrogenase isoform EDA9 as the essential gene for embryo and male gametophyte development in Arabidopsis

Show full item record

Toujani, W.; Muñoz Bertomeu, J.; Flores-Tornero, M.; Rosa-Tellez, S.; Anoman, AD.; Ros, R. (2013). Identification of the essential phosphoglycerate dehydrogenase isoform EDA9 as the essential gene for embryo and male gametophyte development in Arabidopsis. Plant Signaling and Behavior. 8(11):27207-27207. doi:10.4161/psb.27207

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68989

Files in this item

Item Metadata

Title: Identification of the essential phosphoglycerate dehydrogenase isoform EDA9 as the essential gene for embryo and male gametophyte development in Arabidopsis
Author:
UPV Unit: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Issued date:
Abstract:
[EN] Three different pathways of serine (Ser) biosynthesis have been described in plants: the Glycolate pathway, which is part of the Photorespiratory pathway, and 2 non-Photorespiratory pathways, the Glycerate and the ...[+]
Subjects: Phosphorylated pathway of serine biosynthesis , Phosphoglycerate dehydrogenase , Male gametophyte , Embryo development
Copyrigths: Cerrado
Source:
Plant Signaling and Behavior. (issn: 1559-2316 )
DOI: 10.4161/psb.27207
Publisher:
Taylor & Francis
Publisher version: http://dx.doi.org/10.4161/psb.27207
Thanks:
This work has been funded by the Spanish Government and the European Union: FEDER/ BFU2012–31519, JdlC to Muñoz-Bertomeu J, FPI fellowship to Rosa-Téllez S, AECI fellowship to Anoman AD; the Valencian Regional ...[+]
Type: Artículo

References

Toujani, W., Muñoz-Bertomeu, J., Flores-Tornero, M., Rosa-Téllez, S., Anoman, A. D., Alseekh, S., … Ros, R. (2013). Functional Characterization of the Plastidial 3-Phosphoglycerate Dehydrogenase Family in Arabidopsis. Plant Physiology, 163(3), 1164-1178. doi:10.1104/pp.113.226720

Kalhan, S. C., & Hanson, R. W. (2012). Resurgence of Serine: An Often Neglected but Indispensable Amino Acid. Journal of Biological Chemistry, 287(24), 19786-19791. doi:10.1074/jbc.r112.357194

Michard, E., Lima, P. T., Borges, F., Silva, A. C., Portes, M. T., Carvalho, J. E., … Feijo, J. A. (2011). Glutamate Receptor-Like Genes Form Ca2+ Channels in Pollen Tubes and Are Regulated by Pistil D-Serine. Science, 332(6028), 434-437. doi:10.1126/science.1201101 [+]
Toujani, W., Muñoz-Bertomeu, J., Flores-Tornero, M., Rosa-Téllez, S., Anoman, A. D., Alseekh, S., … Ros, R. (2013). Functional Characterization of the Plastidial 3-Phosphoglycerate Dehydrogenase Family in Arabidopsis. Plant Physiology, 163(3), 1164-1178. doi:10.1104/pp.113.226720

Kalhan, S. C., & Hanson, R. W. (2012). Resurgence of Serine: An Often Neglected but Indispensable Amino Acid. Journal of Biological Chemistry, 287(24), 19786-19791. doi:10.1074/jbc.r112.357194

Michard, E., Lima, P. T., Borges, F., Silva, A. C., Portes, M. T., Carvalho, J. E., … Feijo, J. A. (2011). Glutamate Receptor-Like Genes Form Ca2+ Channels in Pollen Tubes and Are Regulated by Pistil D-Serine. Science, 332(6028), 434-437. doi:10.1126/science.1201101

Bauwe, H., Hagemann, M., & Fernie, A. R. (2010). Photorespiration: players, partners and origin. Trends in Plant Science, 15(6), 330-336. doi:10.1016/j.tplants.2010.03.006

Douce, R., Bourguignon, J., Neuburger, M., & Rébeillé, F. (2001). The glycine decarboxylase system: a fascinating complex. Trends in Plant Science, 6(4), 167-176. doi:10.1016/s1360-1385(01)01892-1

Tolbert NE. Photorespiration. In: Davies DD, ed. The biochemistry of plants. New York: Academic Press 1980; 488-525.

Kleczkowski, L. A., & Givan, C. V. (1988). Serine Formation in Leaves by Mechanisms other than the Glycolate Pathway. Journal of Plant Physiology, 132(6), 641-652. doi:10.1016/s0176-1617(88)80223-2

Cascales-Minana, B., Munoz-Bertomeu, J., Flores-Tornero, M., Anoman, A. D., Pertusa, J., Alaiz, M., … Ros, R. (2013). The Phosphorylated Pathway of Serine Biosynthesis Is Essential Both for Male Gametophyte and Embryo Development and for Root Growth in Arabidopsis. The Plant Cell, 25(6), 2084-2101. doi:10.1105/tpc.113.112359

Ho, C.-L., Noji, M., Saito, M., & Saito, K. (1999). Regulation of Serine Biosynthesis inArabidopsis. Journal of Biological Chemistry, 274(1), 397-402. doi:10.1074/jbc.274.1.397

Ho, C.-L., Noji, M., & Saito, K. (1999). Plastidic Pathway of Serine Biosynthesis. Journal of Biological Chemistry, 274(16), 11007-11012. doi:10.1074/jbc.274.16.11007

Timm, S., Florian, A., Wittmiß, M., Jahnke, K., Hagemann, M., Fernie, A. R., & Bauwe, H. (2013). Serine Acts as a Metabolic Signal for the Transcriptional Control of Photorespiration-Related Genes in Arabidopsis. Plant Physiology, 162(1), 379-389. doi:10.1104/pp.113.215970

[-]

This item appears in the following Collection(s)

Show full item record