Mostrar el registro sencillo del ítem
dc.contributor.author | Toujani, Walid | es_ES |
dc.contributor.author | Muñoz Bertomeu, Jesús | es_ES |
dc.contributor.author | Flores-Tornero, María | es_ES |
dc.contributor.author | Rosa-Tellez, Sara | es_ES |
dc.contributor.author | Anoman, Armand Djoro | es_ES |
dc.contributor.author | Ros, Roc | es_ES |
dc.date.accessioned | 2016-09-07T11:15:22Z | |
dc.date.available | 2016-09-07T11:15:22Z | |
dc.date.issued | 2013-11 | |
dc.identifier.issn | 1559-2316 | |
dc.identifier.uri | http://hdl.handle.net/10251/68989 | |
dc.description.abstract | [EN] Three different pathways of serine (Ser) biosynthesis have been described in plants: the Glycolate pathway, which is part of the Photorespiratory pathway, and 2 non-Photorespiratory pathways, the Glycerate and the Phosphorylated pathways. The Phosphorylated Pathway of Ser Biosynthesis (PPSB) has been known to exist since the 1950s, but its biological relevance was not revealed until quite recently when the last enzyme of the pathway, the Phosphoserine Phosphatase, was functionally characterized. In the associated study1, we characterized a family of genes coding for putatite phosphoglycerate dehydrogenases (PGDH, 3-PGDH, and EDA9), the first enzyme of the PPSB. A metabolomics study using overexpressing plants indicated that all PGDH family genes were able to regulate Ser homeostasis but only lacking of EDA9 expression caused drastic developmental defects. We provided genetic and molecular evidence for the essential role of EDA9 for embryo and pollen development. Here, some new insights into the physiological/molecular function of PPSB and Ser are presented and discussed. | es_ES |
dc.description.sponsorship | This work has been funded by the Spanish Government and the European Union: FEDER/ BFU2012–31519, JdlC to Muñoz-Bertomeu J, FPI fellowship to Rosa-Téllez S, AECI fellowship to Anoman AD; the Valencian Regional Government: PROMETEO/2009/075; and the University of Valencia: “Atracció de Talent” fellowship to Flores-Tornero M. | |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Plant Signaling and Behavior | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Phosphorylated pathway of serine biosynthesis | es_ES |
dc.subject | Phosphoglycerate dehydrogenase | es_ES |
dc.subject | Male gametophyte | es_ES |
dc.subject | Embryo development | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Identification of the essential phosphoglycerate dehydrogenase isoform EDA9 as the essential gene for embryo and male gametophyte development in Arabidopsis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4161/psb.27207 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2012-31519/ES/CARACTERIZACION FUNCIONAL DE ENZIMAS CLAVE DEL METABOLISMO PLASTIDIAL EN ARABIDOPSIS Y MAIZ COMO ESTRATEGIA PARA MEJORAR LA CALIDAD NUTRICIONAL DE LAS PLANTAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F075/ES/Mejora de plantas con interés agronómico y forestal- MEPIAF/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Toujani, W.; Muñoz Bertomeu, J.; Flores-Tornero, M.; Rosa-Tellez, S.; Anoman, AD.; Ros, R. (2013). Identification of the essential phosphoglycerate dehydrogenase isoform EDA9 as the essential gene for embryo and male gametophyte development in Arabidopsis. Plant Signaling and Behavior. 8(11):27207-27207. https://doi.org/10.4161/psb.27207 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.4161/psb.27207 | es_ES |
dc.description.upvformatpinicio | 27207 | es_ES |
dc.description.upvformatpfin | 27207 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.senia | 255038 | es_ES |
dc.identifier.pmid | PMC4091315 | |
dc.identifier.pmid | 24304635 | |
dc.identifier.pmcid | PMC4091315 | |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universitat de València | es_ES |
dc.description.references | Toujani, W., Muñoz-Bertomeu, J., Flores-Tornero, M., Rosa-Téllez, S., Anoman, A. D., Alseekh, S., … Ros, R. (2013). Functional Characterization of the Plastidial 3-Phosphoglycerate Dehydrogenase Family in Arabidopsis. Plant Physiology, 163(3), 1164-1178. doi:10.1104/pp.113.226720 | es_ES |
dc.description.references | Kalhan, S. C., & Hanson, R. W. (2012). Resurgence of Serine: An Often Neglected but Indispensable Amino Acid. Journal of Biological Chemistry, 287(24), 19786-19791. doi:10.1074/jbc.r112.357194 | es_ES |
dc.description.references | Michard, E., Lima, P. T., Borges, F., Silva, A. C., Portes, M. T., Carvalho, J. E., … Feijo, J. A. (2011). Glutamate Receptor-Like Genes Form Ca2+ Channels in Pollen Tubes and Are Regulated by Pistil D-Serine. Science, 332(6028), 434-437. doi:10.1126/science.1201101 | es_ES |
dc.description.references | Bauwe, H., Hagemann, M., & Fernie, A. R. (2010). Photorespiration: players, partners and origin. Trends in Plant Science, 15(6), 330-336. doi:10.1016/j.tplants.2010.03.006 | es_ES |
dc.description.references | Douce, R., Bourguignon, J., Neuburger, M., & Rébeillé, F. (2001). The glycine decarboxylase system: a fascinating complex. Trends in Plant Science, 6(4), 167-176. doi:10.1016/s1360-1385(01)01892-1 | es_ES |
dc.description.references | Tolbert NE. Photorespiration. In: Davies DD, ed. The biochemistry of plants. New York: Academic Press 1980; 488-525. | es_ES |
dc.description.references | Kleczkowski, L. A., & Givan, C. V. (1988). Serine Formation in Leaves by Mechanisms other than the Glycolate Pathway. Journal of Plant Physiology, 132(6), 641-652. doi:10.1016/s0176-1617(88)80223-2 | es_ES |
dc.description.references | Cascales-Minana, B., Munoz-Bertomeu, J., Flores-Tornero, M., Anoman, A. D., Pertusa, J., Alaiz, M., … Ros, R. (2013). The Phosphorylated Pathway of Serine Biosynthesis Is Essential Both for Male Gametophyte and Embryo Development and for Root Growth in Arabidopsis. The Plant Cell, 25(6), 2084-2101. doi:10.1105/tpc.113.112359 | es_ES |
dc.description.references | Ho, C.-L., Noji, M., Saito, M., & Saito, K. (1999). Regulation of Serine Biosynthesis inArabidopsis. Journal of Biological Chemistry, 274(1), 397-402. doi:10.1074/jbc.274.1.397 | es_ES |
dc.description.references | Ho, C.-L., Noji, M., & Saito, K. (1999). Plastidic Pathway of Serine Biosynthesis. Journal of Biological Chemistry, 274(16), 11007-11012. doi:10.1074/jbc.274.16.11007 | es_ES |
dc.description.references | Timm, S., Florian, A., Wittmiß, M., Jahnke, K., Hagemann, M., Fernie, A. R., & Bauwe, H. (2013). Serine Acts as a Metabolic Signal for the Transcriptional Control of Photorespiration-Related Genes in Arabidopsis. Plant Physiology, 162(1), 379-389. doi:10.1104/pp.113.215970 | es_ES |