- -

Identification of the essential phosphoglycerate dehydrogenase isoform EDA9 as the essential gene for embryo and male gametophyte development in Arabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of the essential phosphoglycerate dehydrogenase isoform EDA9 as the essential gene for embryo and male gametophyte development in Arabidopsis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Toujani, Walid es_ES
dc.contributor.author Muñoz Bertomeu, Jesús es_ES
dc.contributor.author Flores-Tornero, María es_ES
dc.contributor.author Rosa-Tellez, Sara es_ES
dc.contributor.author Anoman, Armand Djoro es_ES
dc.contributor.author Ros, Roc es_ES
dc.date.accessioned 2016-09-07T11:15:22Z
dc.date.available 2016-09-07T11:15:22Z
dc.date.issued 2013-11
dc.identifier.issn 1559-2316
dc.identifier.uri http://hdl.handle.net/10251/68989
dc.description.abstract [EN] Three different pathways of serine (Ser) biosynthesis have been described in plants: the Glycolate pathway, which is part of the Photorespiratory pathway, and 2 non-Photorespiratory pathways, the Glycerate and the Phosphorylated pathways. The Phosphorylated Pathway of Ser Biosynthesis (PPSB) has been known to exist since the 1950s, but its biological relevance was not revealed until quite recently when the last enzyme of the pathway, the Phosphoserine Phosphatase, was functionally characterized. In the associated study1, we characterized a family of genes coding for putatite phosphoglycerate dehydrogenases (PGDH, 3-PGDH, and EDA9), the first enzyme of the PPSB. A metabolomics study using overexpressing plants indicated that all PGDH family genes were able to regulate Ser homeostasis but only lacking of EDA9 expression caused drastic developmental defects. We provided genetic and molecular evidence for the essential role of EDA9 for embryo and pollen development. Here, some new insights into the physiological/molecular function of PPSB and Ser are presented and discussed. es_ES
dc.description.sponsorship This work has been funded by the Spanish Government and the European Union: FEDER/ BFU2012–31519, JdlC to Muñoz-Bertomeu J, FPI fellowship to Rosa-Téllez S, AECI fellowship to Anoman AD; the Valencian Regional Government: PROMETEO/2009/075; and the University of Valencia: “Atracció de Talent” fellowship to Flores-Tornero M.
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Plant Signaling and Behavior es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Phosphorylated pathway of serine biosynthesis es_ES
dc.subject Phosphoglycerate dehydrogenase es_ES
dc.subject Male gametophyte es_ES
dc.subject Embryo development es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Identification of the essential phosphoglycerate dehydrogenase isoform EDA9 as the essential gene for embryo and male gametophyte development in Arabidopsis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4161/psb.27207
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-31519/ES/CARACTERIZACION FUNCIONAL DE ENZIMAS CLAVE DEL METABOLISMO PLASTIDIAL EN ARABIDOPSIS Y MAIZ COMO ESTRATEGIA PARA MEJORAR LA CALIDAD NUTRICIONAL DE LAS PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F075/ES/Mejora de plantas con interés agronómico y forestal- MEPIAF/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Toujani, W.; Muñoz Bertomeu, J.; Flores-Tornero, M.; Rosa-Tellez, S.; Anoman, AD.; Ros, R. (2013). Identification of the essential phosphoglycerate dehydrogenase isoform EDA9 as the essential gene for embryo and male gametophyte development in Arabidopsis. Plant Signaling and Behavior. 8(11):27207-27207. https://doi.org/10.4161/psb.27207 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.4161/psb.27207 es_ES
dc.description.upvformatpinicio 27207 es_ES
dc.description.upvformatpfin 27207 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 255038 es_ES
dc.identifier.pmid PMC4091315
dc.identifier.pmid 24304635
dc.identifier.pmcid PMC4091315
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat de València es_ES
dc.description.references Toujani, W., Muñoz-Bertomeu, J., Flores-Tornero, M., Rosa-Téllez, S., Anoman, A. D., Alseekh, S., … Ros, R. (2013). Functional Characterization of the Plastidial 3-Phosphoglycerate Dehydrogenase Family in Arabidopsis. Plant Physiology, 163(3), 1164-1178. doi:10.1104/pp.113.226720 es_ES
dc.description.references Kalhan, S. C., & Hanson, R. W. (2012). Resurgence of Serine: An Often Neglected but Indispensable Amino Acid. Journal of Biological Chemistry, 287(24), 19786-19791. doi:10.1074/jbc.r112.357194 es_ES
dc.description.references Michard, E., Lima, P. T., Borges, F., Silva, A. C., Portes, M. T., Carvalho, J. E., … Feijo, J. A. (2011). Glutamate Receptor-Like Genes Form Ca2+ Channels in Pollen Tubes and Are Regulated by Pistil D-Serine. Science, 332(6028), 434-437. doi:10.1126/science.1201101 es_ES
dc.description.references Bauwe, H., Hagemann, M., & Fernie, A. R. (2010). Photorespiration: players, partners and origin. Trends in Plant Science, 15(6), 330-336. doi:10.1016/j.tplants.2010.03.006 es_ES
dc.description.references Douce, R., Bourguignon, J., Neuburger, M., & Rébeillé, F. (2001). The glycine decarboxylase system: a fascinating complex. Trends in Plant Science, 6(4), 167-176. doi:10.1016/s1360-1385(01)01892-1 es_ES
dc.description.references Tolbert NE. Photorespiration. In: Davies DD, ed. The biochemistry of plants. New York: Academic Press 1980; 488-525. es_ES
dc.description.references Kleczkowski, L. A., & Givan, C. V. (1988). Serine Formation in Leaves by Mechanisms other than the Glycolate Pathway. Journal of Plant Physiology, 132(6), 641-652. doi:10.1016/s0176-1617(88)80223-2 es_ES
dc.description.references Cascales-Minana, B., Munoz-Bertomeu, J., Flores-Tornero, M., Anoman, A. D., Pertusa, J., Alaiz, M., … Ros, R. (2013). The Phosphorylated Pathway of Serine Biosynthesis Is Essential Both for Male Gametophyte and Embryo Development and for Root Growth in Arabidopsis. The Plant Cell, 25(6), 2084-2101. doi:10.1105/tpc.113.112359 es_ES
dc.description.references Ho, C.-L., Noji, M., Saito, M., & Saito, K. (1999). Regulation of Serine Biosynthesis inArabidopsis. Journal of Biological Chemistry, 274(1), 397-402. doi:10.1074/jbc.274.1.397 es_ES
dc.description.references Ho, C.-L., Noji, M., & Saito, K. (1999). Plastidic Pathway of Serine Biosynthesis. Journal of Biological Chemistry, 274(16), 11007-11012. doi:10.1074/jbc.274.16.11007 es_ES
dc.description.references Timm, S., Florian, A., Wittmiß, M., Jahnke, K., Hagemann, M., Fernie, A. R., & Bauwe, H. (2013). Serine Acts as a Metabolic Signal for the Transcriptional Control of Photorespiration-Related Genes in Arabidopsis. Plant Physiology, 162(1), 379-389. doi:10.1104/pp.113.215970 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem