- -

A Genetic Algorithm for Energy-Efficiency in Job-Shop Scheduling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Genetic Algorithm for Energy-Efficiency in Job-Shop Scheduling

Mostrar el registro completo del ítem

Salido, MA.; Escamilla Fuster, J.; Giret Boggino, AS.; Barber, F. (2016). A Genetic Algorithm for Energy-Efficiency in Job-Shop Scheduling. International Journal of Advanced Manufacturing Technology. 85(5-8):1303-1314. https://doi.org/10.1007/s00170-015-7987-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/69061

Ficheros en el ítem

Metadatos del ítem

Título: A Genetic Algorithm for Energy-Efficiency in Job-Shop Scheduling
Autor: Salido, Miguel A. Escamilla Fuster, Joan Giret Boggino, Adriana Susana Barber, Federico
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
Many real-world scheduling problems are solved to obtain optimal solutions in term of processing time, cost, and quality as optimization objectives. Currently, energyefficiency is also taken into consideration in these ...[+]
Palabras clave: Job-shop scheduling problems , Metaheuristic , Energy-efficiency , Robustness , Makespan , Artificial intelligence
Derechos de uso: Cerrado
Fuente:
International Journal of Advanced Manufacturing Technology. (issn: 0268-3768 ) (eissn: 1433-3015 )
DOI: 10.1007/s00170-015-7987-0
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s00170-015-7987-0
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2013-46511-C2-1-P/ES/TECNICAS INTELIGENTES PARA LA OBTENCION DE SOLUCIONES ROBUSTAS Y EFICIENTES ENERGETICAMENTE EN SCHEDULING: APLICACION AL TRANSPORTE::UPV/
info:eu-repo/grantAgreement/EC/FP7/294931/EU/Customised Advisory Services for Energy-efficient Manufacturing Systems/
Agradecimientos:
This research has been supported by the Spanish Government under research project MINECO TIN2013-46511-C2-1 and the CASES project supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within ...[+]
Tipo: Artículo

References

Adams J, Balas E, Zawack D (1988) Shifting bottleneck procedure for job shop scheduling. Manag Sci 34(3):391–401

Agnetis A, Flamini M, Nicosia G, Pacifici A (2011) A job-shop problem with one additional resource type. J Sched 14(3):225–237

Allahverdi A, Ng CT, Cheng TCE, Kovalyov MY (2008) A survey of scheduling problems with setup times or costs. Eur J Oper Res 187(3):985–1032 [+]
Adams J, Balas E, Zawack D (1988) Shifting bottleneck procedure for job shop scheduling. Manag Sci 34(3):391–401

Agnetis A, Flamini M, Nicosia G, Pacifici A (2011) A job-shop problem with one additional resource type. J Sched 14(3):225–237

Allahverdi A, Ng CT, Cheng TCE, Kovalyov MY (2008) A survey of scheduling problems with setup times or costs. Eur J Oper Res 187(3):985–1032

Barba I, Del Valle C, Borrego D (2009) A constraint-based job-shop scheduling model for software development planning. Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, vol 3

Beasley D, Martin RR, Bull DR (1993) An overview of genetic algorithms: Part 1. fundamentals, vol 15. University computing, pp 58–58

Bierwirth C (1995) A generalized permutation approach to job shop scheduling with genetic algorithms. Operations-Research-Spektrum 17(2-3):87–92

Blazewicz J, Cellary W, Slowinski R, Weglarz J (1986) Scheduling under resource constraints-deterministic models. Ann Oper Res 7:1–356

Brown APG, Lomnicki ZA (1966) Some applications of the branch-and-bound algorithm to the machine scheduling problem. Oper Res:173–186

Bruzzone AAG, Anghinolfi D, Paolucci M, Tonelli F (2012) Energy-aware scheduling for improving manufacturing process sustainability: a mathematical model for flexible flow shops

Bunde DP (2006) Power-aware scheduling for makespan and flow. In: Proceedings of the Eighteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures. ACM, New York, pp 190–196

Dai M, Tang D, Giret A, Salido MA, Li WD (2013) Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robot Comput Integr Manuf 29(5):418–429

Fang K, Uhan N, Zhao F, Sutherland JW (2011) A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. J Manuf Syst 30(4):234–240

Garey MR, Johnson DS, Sethi R (1976) The complexity of flowshop and jobshop scheduling. Math Oper Res 1(2):117–129

Gonċalves JF, de Magalhães Mendes JJ, Resende MGC (2005) A hybrid genetic algorithm for the job shop scheduling problem. Eur J Oper Res 167(1):77–95

Guo ZX, Wong WK, Leung SYS, Fan JT, Chan SF (2006) Mathematical model and genetic optimization for the job shop scheduling problem in a mixed-and multi-product assembly environment: a case study based on the apparel industry. Comput Ind Eng 50(3):202–219

IBM (2007) Modeling with IBM ILOG CP Optimizer—practical scheduling examples. IBM

IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.

Jain AS, Meeran S (1998) Job-shop scheduling using neural networks. Int J Prod Res 36(5):1249–1272

Kapamara T, Sheibani K, Haas OCL, Reeves CR, Petrovic D (2006) A review of scheduling problems in radiotherapy. In: Proceedings of the Eighteenth International Conference on Systems Engineering (ICSE2006), Coventry University, UK , pp 201–207

Khormali A, Mirzazadeh A, Faez F (2012) The openshop batch processing problem with non-identical processing times, using simulated annealing and genetic algorithms approaches. Int J Adv Manuf Technol 59(9-12):1157–1165

Laborie P (2009) IBM ILOG CP Optimizer for detailed scheduling illustrated on three problems. In: Proceedings of the 6th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR09), pp 148–162

Li L, Yan J, Xing Z (2013) Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling

Li W, Zein A, Kara S, Herrmann C (2011) An investigation into fixed energy consumption of machine tools. Glocalized Solutions for Sustainability in Manufacturing

Ching-Fang L (2000) A hybrid genetic algorithm for the open shop scheduling problem. Eur J Oper Res 124(1):28–42

Malakooti B, Sheikh S, Al-Najjar C, Kim H (2013) Multi-objective energy aware multiprocessor scheduling using bat intelligence. J Int Manag 24(4):805–819

May G, Stahl B, Taisch M, Prabhu V (2015) Multi-objective genetic algorithm for energy-efficient job shop scheduling. Int J Prod Res:1–19

Mestl HE, Aunan K, Fang J, Seip HM, Skjelvik JM, Vennemo H (2005) Cleaner production as climate investmentin-tegrated assessment in Taiyuan city, China. J Clean Prod 13(1):57–70

Mouzon G, Yildirim MB, Twomey J (2007) Operational methods for minimization of energy consumption of manufacturing equipment. Int J Prod Res 45(18-19):4247–4271

Neugebauer R, Wabner M, Rentzsch H, Ihlenfeldt S (2011) Structure principles of energy efficient machine tools. CIRP J Manuf Sci Technol 4(2):136–147

Ono I, Yamamura M, Kobayashi S (1996) A genetic algorithm for job-shop scheduling problems using job-based order crossover. In: Evolutionary Computation, 1996., Proceedings of IEEE International Conference on, pages 547–552. IEEE

Perez-Rodriguez R, Jons S, Hernandez-Aguirre A, Alberto-Ochoa C (2014) Simulation optimization for a flexible jobshop scheduling problem using an estimation of distribution algorithm. Int J Adv Manuf Technol 73(1-4):3–21

Resende MGC (1997) A grasp for job shop scheduling. In: INFORMS Spring Meeting

Salido MA, Escamilla J, Barber F, Giret A, Tang D, Dai M (2013) Energy-aware parameters in job-shop scheduling problems. In: GREEN-COPLAS 2013: IJCAI 2013 Workshop on Constraint Reasoning, Planning and Scheduling Problems for a Sustainable Future, pp 44–53

Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64(2):278–285

Vahedi-Nouri B, Fattahi P, Tavakkoli-Moghaddam R, Ramezanian R (2014) A general flow shop scheduling problem with consideration of position-based learning effect and multiple availability constraints. Int J Adv Manuf Technol 73(5-8):601–611

Watson J-P, Barbulescu L, Howe AE, Whitley DL (1999) Algorithm performance and problem structure for flow-shop scheduling. In: AAAI/IAAI, pp 688–695

Yan J, Li L (2013) Multi-objective optimization of milling parametersthe trade-offs between energy, production rate and cutting quality. J Clean Prod

Yusoff S (2006) Renewable energy from palm oil–innovation on effective utilization of waste. J Clean Prod 14(1):87–93

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem