Mostrar el registro sencillo del ítem
dc.contributor.author | Salido, Miguel A. | es_ES |
dc.contributor.author | Escamilla Fuster, Joan | es_ES |
dc.contributor.author | Giret Boggino, Adriana Susana | es_ES |
dc.contributor.author | Barber, Federico | es_ES |
dc.date.accessioned | 2016-09-08T07:46:42Z | |
dc.date.available | 2016-09-08T07:46:42Z | |
dc.date.issued | 2016-07 | |
dc.identifier.issn | 0268-3768 | |
dc.identifier.uri | http://hdl.handle.net/10251/69061 | |
dc.description.abstract | Many real-world scheduling problems are solved to obtain optimal solutions in term of processing time, cost, and quality as optimization objectives. Currently, energyefficiency is also taken into consideration in these problems. However, this problem is NP-hard, so many search techniques are not able to obtain a solution in a reasonable time. In this paper, a genetic algorithm is developed to solve an extended version of the Job-shop Scheduling Problem in which machines can consume different amounts of energy to process tasks at different rates (speed scaling). This problem represents an extension of the classical jobshop scheduling problem, where each operation has to be executed by one machine and this machine can work at different speeds. The evaluation section shows that a powerful commercial tool for solving scheduling problems was not able to solve large instances in a reasonable time, meanwhile our genetic algorithm was able to solve all instances with a good solution quality. | es_ES |
dc.description.sponsorship | This research has been supported by the Spanish Government under research project MINECO TIN2013-46511-C2-1 and the CASES project supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme under the grant agreement No 294931. We would like to thanks Philippe Laborie (IBM ILOG CPLEX) for validating the CP Optimizer model for this problem. We also appreciate the significant efforts made by all the reviewers to improve this paper. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | International Journal of Advanced Manufacturing Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Job-shop scheduling problems | es_ES |
dc.subject | Metaheuristic | es_ES |
dc.subject | Energy-efficiency | es_ES |
dc.subject | Robustness | es_ES |
dc.subject | Makespan | es_ES |
dc.subject | Artificial intelligence | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | A Genetic Algorithm for Energy-Efficiency in Job-Shop Scheduling | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00170-015-7987-0 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2013-46511-C2-1-P/ES/TECNICAS INTELIGENTES PARA LA OBTENCION DE SOLUCIONES ROBUSTAS Y EFICIENTES ENERGETICAMENTE EN SCHEDULING: APLICACION AL TRANSPORTE::UPV/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/294931/EU/Customised Advisory Services for Energy-efficient Manufacturing Systems/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Salido, MA.; Escamilla Fuster, J.; Giret Boggino, AS.; Barber, F. (2016). A Genetic Algorithm for Energy-Efficiency in Job-Shop Scheduling. International Journal of Advanced Manufacturing Technology. 85(5-8):1303-1314. https://doi.org/10.1007/s00170-015-7987-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00170-015-7987-0 | es_ES |
dc.description.upvformatpinicio | 1303 | es_ES |
dc.description.upvformatpfin | 1314 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 85 | es_ES |
dc.description.issue | 5-8 | es_ES |
dc.relation.senia | 294862 | es_ES |
dc.identifier.eissn | 1433-3015 | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Adams J, Balas E, Zawack D (1988) Shifting bottleneck procedure for job shop scheduling. Manag Sci 34(3):391–401 | es_ES |
dc.description.references | Agnetis A, Flamini M, Nicosia G, Pacifici A (2011) A job-shop problem with one additional resource type. J Sched 14(3):225–237 | es_ES |
dc.description.references | Allahverdi A, Ng CT, Cheng TCE, Kovalyov MY (2008) A survey of scheduling problems with setup times or costs. Eur J Oper Res 187(3):985–1032 | es_ES |
dc.description.references | Barba I, Del Valle C, Borrego D (2009) A constraint-based job-shop scheduling model for software development planning. Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, vol 3 | es_ES |
dc.description.references | Beasley D, Martin RR, Bull DR (1993) An overview of genetic algorithms: Part 1. fundamentals, vol 15. University computing, pp 58–58 | es_ES |
dc.description.references | Bierwirth C (1995) A generalized permutation approach to job shop scheduling with genetic algorithms. Operations-Research-Spektrum 17(2-3):87–92 | es_ES |
dc.description.references | Blazewicz J, Cellary W, Slowinski R, Weglarz J (1986) Scheduling under resource constraints-deterministic models. Ann Oper Res 7:1–356 | es_ES |
dc.description.references | Brown APG, Lomnicki ZA (1966) Some applications of the branch-and-bound algorithm to the machine scheduling problem. Oper Res:173–186 | es_ES |
dc.description.references | Bruzzone AAG, Anghinolfi D, Paolucci M, Tonelli F (2012) Energy-aware scheduling for improving manufacturing process sustainability: a mathematical model for flexible flow shops | es_ES |
dc.description.references | Bunde DP (2006) Power-aware scheduling for makespan and flow. In: Proceedings of the Eighteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures. ACM, New York, pp 190–196 | es_ES |
dc.description.references | Dai M, Tang D, Giret A, Salido MA, Li WD (2013) Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robot Comput Integr Manuf 29(5):418–429 | es_ES |
dc.description.references | Fang K, Uhan N, Zhao F, Sutherland JW (2011) A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. J Manuf Syst 30(4):234–240 | es_ES |
dc.description.references | Garey MR, Johnson DS, Sethi R (1976) The complexity of flowshop and jobshop scheduling. Math Oper Res 1(2):117–129 | es_ES |
dc.description.references | Gonċalves JF, de Magalhães Mendes JJ, Resende MGC (2005) A hybrid genetic algorithm for the job shop scheduling problem. Eur J Oper Res 167(1):77–95 | es_ES |
dc.description.references | Guo ZX, Wong WK, Leung SYS, Fan JT, Chan SF (2006) Mathematical model and genetic optimization for the job shop scheduling problem in a mixed-and multi-product assembly environment: a case study based on the apparel industry. Comput Ind Eng 50(3):202–219 | es_ES |
dc.description.references | IBM (2007) Modeling with IBM ILOG CP Optimizer—practical scheduling examples. IBM | es_ES |
dc.description.references | IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/. | es_ES |
dc.description.references | Jain AS, Meeran S (1998) Job-shop scheduling using neural networks. Int J Prod Res 36(5):1249–1272 | es_ES |
dc.description.references | Kapamara T, Sheibani K, Haas OCL, Reeves CR, Petrovic D (2006) A review of scheduling problems in radiotherapy. In: Proceedings of the Eighteenth International Conference on Systems Engineering (ICSE2006), Coventry University, UK , pp 201–207 | es_ES |
dc.description.references | Khormali A, Mirzazadeh A, Faez F (2012) The openshop batch processing problem with non-identical processing times, using simulated annealing and genetic algorithms approaches. Int J Adv Manuf Technol 59(9-12):1157–1165 | es_ES |
dc.description.references | Laborie P (2009) IBM ILOG CP Optimizer for detailed scheduling illustrated on three problems. In: Proceedings of the 6th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR09), pp 148–162 | es_ES |
dc.description.references | Li L, Yan J, Xing Z (2013) Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling | es_ES |
dc.description.references | Li W, Zein A, Kara S, Herrmann C (2011) An investigation into fixed energy consumption of machine tools. Glocalized Solutions for Sustainability in Manufacturing | es_ES |
dc.description.references | Ching-Fang L (2000) A hybrid genetic algorithm for the open shop scheduling problem. Eur J Oper Res 124(1):28–42 | es_ES |
dc.description.references | Malakooti B, Sheikh S, Al-Najjar C, Kim H (2013) Multi-objective energy aware multiprocessor scheduling using bat intelligence. J Int Manag 24(4):805–819 | es_ES |
dc.description.references | May G, Stahl B, Taisch M, Prabhu V (2015) Multi-objective genetic algorithm for energy-efficient job shop scheduling. Int J Prod Res:1–19 | es_ES |
dc.description.references | Mestl HE, Aunan K, Fang J, Seip HM, Skjelvik JM, Vennemo H (2005) Cleaner production as climate investmentin-tegrated assessment in Taiyuan city, China. J Clean Prod 13(1):57–70 | es_ES |
dc.description.references | Mouzon G, Yildirim MB, Twomey J (2007) Operational methods for minimization of energy consumption of manufacturing equipment. Int J Prod Res 45(18-19):4247–4271 | es_ES |
dc.description.references | Neugebauer R, Wabner M, Rentzsch H, Ihlenfeldt S (2011) Structure principles of energy efficient machine tools. CIRP J Manuf Sci Technol 4(2):136–147 | es_ES |
dc.description.references | Ono I, Yamamura M, Kobayashi S (1996) A genetic algorithm for job-shop scheduling problems using job-based order crossover. In: Evolutionary Computation, 1996., Proceedings of IEEE International Conference on, pages 547–552. IEEE | es_ES |
dc.description.references | Perez-Rodriguez R, Jons S, Hernandez-Aguirre A, Alberto-Ochoa C (2014) Simulation optimization for a flexible jobshop scheduling problem using an estimation of distribution algorithm. Int J Adv Manuf Technol 73(1-4):3–21 | es_ES |
dc.description.references | Resende MGC (1997) A grasp for job shop scheduling. In: INFORMS Spring Meeting | es_ES |
dc.description.references | Salido MA, Escamilla J, Barber F, Giret A, Tang D, Dai M (2013) Energy-aware parameters in job-shop scheduling problems. In: GREEN-COPLAS 2013: IJCAI 2013 Workshop on Constraint Reasoning, Planning and Scheduling Problems for a Sustainable Future, pp 44–53 | es_ES |
dc.description.references | Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64(2):278–285 | es_ES |
dc.description.references | Vahedi-Nouri B, Fattahi P, Tavakkoli-Moghaddam R, Ramezanian R (2014) A general flow shop scheduling problem with consideration of position-based learning effect and multiple availability constraints. Int J Adv Manuf Technol 73(5-8):601–611 | es_ES |
dc.description.references | Watson J-P, Barbulescu L, Howe AE, Whitley DL (1999) Algorithm performance and problem structure for flow-shop scheduling. In: AAAI/IAAI, pp 688–695 | es_ES |
dc.description.references | Yan J, Li L (2013) Multi-objective optimization of milling parametersthe trade-offs between energy, production rate and cutting quality. J Clean Prod | es_ES |
dc.description.references | Yusoff S (2006) Renewable energy from palm oil–innovation on effective utilization of waste. J Clean Prod 14(1):87–93 | es_ES |