- -

Energy efficiency, robustness, and makespan optimality in job-shop scheduling problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Energy efficiency, robustness, and makespan optimality in job-shop scheduling problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Salido Gregorio, Miguel Angel es_ES
dc.contributor.author Escamilla Fuster, Joan es_ES
dc.contributor.author Barber Sanchís, Federico es_ES
dc.contributor.author Giret Boggino, Adriana Susana es_ES
dc.contributor.author Tang, Dunbing es_ES
dc.contributor.author Dai, Min es_ES
dc.date.accessioned 2016-09-08T10:31:27Z
dc.date.available 2016-09-08T10:31:27Z
dc.date.issued 2015
dc.identifier.issn 0890-0604
dc.identifier.uri http://hdl.handle.net/10251/69097
dc.description.abstract [EN] Many real-world problems are known as planning and scheduling problems, where resources must be allocated so as to optimize overall performance objectives. The traditional scheduling models consider performance indicators such as processing time, cost, and quality as optimization objectives. However, most of them do not take into account energy consumption and robustness. We focus our attention in a job-shop scheduling problem where machines can work at different speeds. It represents an extension of the classical job-shop scheduling problem, where each operation has to be executed by one machine and this machine can work at different speeds. The main goal of the paper is focused on the analysis of three important objectives (energy efficiency, robustness, and makespan) and the relationship among them. We present some analytical formulas to estimate the ratio/relationship between these parameters. It can be observed that there exists a clear relationship between robustness and energy efficiency and a clear trade-off between robustness/energy efficiency and makespan. It represents an advance in the state of the art of production scheduling, so obtaining energy-efficient solutions also supposes obtaining robust solutions, and vice versa. es_ES
dc.description.sponsorship This research has been supported by the Spanish Government under research project MICINN TIN2013-46511-C2-1-P, the European CASES project (No. 294931) supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the FP7, and the European TETRACOM project (No. 609491) supported by FP7-ICT-2013-10. This research was also supported by the National Science Foundation of China (No. 51175262) and the Jiangsu Province Science Foundation for Excellent Youths under Grant BK2012032. en_EN
dc.language Inglés es_ES
dc.publisher Cambridge University Press (CUP): STM Journals es_ES
dc.relation.ispartof AI EDAM es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Energy Efficiency es_ES
dc.subject Job-Shop Scheduling es_ES
dc.subject Parameter Relationship es_ES
dc.subject Robustness es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Energy efficiency, robustness, and makespan optimality in job-shop scheduling problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1017/S0890060415000335
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-46511-C2-1-P/ES/TECNICAS INTELIGENTES PARA LA OBTENCION DE SOLUCIONES ROBUSTAS Y EFICIENTES ENERGETICAMENTE EN SCHEDULING: APLICACION AL TRANSPORTE::UPV/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/294931/EU/Customised Advisory Services for Energy-efficient Manufacturing Systems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//51175262/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/609491/EU/Technology Transfer in Computing Systems/ es_ES
dc.rights.accessRights Abierto
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Salido Gregorio, MA.; Escamilla Fuster, J.; Barber Sanchís, F.; Giret Boggino, AS.; Tang, D.; Dai, M. (2015). Energy efficiency, robustness, and makespan optimality in job-shop scheduling problems. AI EDAM. 30(3):300-312. https://doi.org/10.1017/S0890060415000335 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1017/S0890060415000335 es_ES
dc.description.upvformatpinicio 300 es_ES
dc.description.upvformatpfin 312 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 294861 es_ES
dc.identifier.eissn 1469-1760
dc.contributor.funder European Commission
dc.contributor.funder National Science Foundation, China
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Billaut, J.-C., Moukrim, A., & Sanlaville, E. (Eds.). (2008). Flexibility and Robustness in Scheduling. doi:10.1002/9780470611432 es_ES
dc.description.references Nowicki, E., & Smutnicki, C. (2005). An Advanced Tabu Search Algorithm for the Job Shop Problem. Journal of Scheduling, 8(2), 145-159. doi:10.1007/s10951-005-6364-5 es_ES
dc.description.references Agnetis, A., Flamini, M., Nicosia, G., & Pacifici, A. (2010). A job-shop problem with one additional resource type. Journal of Scheduling, 14(3), 225-237. doi:10.1007/s10951-010-0162-4 es_ES
dc.description.references Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18-19), 4247-4271. doi:10.1080/00207540701450013 es_ES
dc.description.references Weinert, N., Chiotellis, S., & Seliger, G. (2011). Methodology for planning and operating energy-efficient production systems. CIRP Annals, 60(1), 41-44. doi:10.1016/j.cirp.2011.03.015 es_ES
dc.description.references Duflou, J. R., Sutherland, J. W., Dornfeld, D., Herrmann, C., Jeswiet, J., Kara, S., … Kellens, K. (2012). Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Annals, 61(2), 587-609. doi:10.1016/j.cirp.2012.05.002 es_ES
dc.description.references Laborie P. (2009). IBM ILOG CP Optimizer for detailed scheduling illustrated on three problems. Proc. 6th Int. Conf. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR09. es_ES
dc.description.references Dahmus J. , & Gutowski T. (2004). An environmental analysis of machining. Proc. ASME Int. Mechanical Engineering Congr. RD&D Exposition, Anaheim, CA. es_ES
dc.description.references Huang, K.-L., & Liao, C.-J. (2008). Ant colony optimization combined with taboo search for the job shop scheduling problem. Computers & Operations Research, 35(4), 1030-1046. doi:10.1016/j.cor.2006.07.003 es_ES
dc.description.references IBM. (2010). Modeling With IBM ILOG CP Optimizer—Practical Scheduling Examples (white paper). Armonk, NY: IBM Software Group. es_ES
dc.description.references Kramer L. , Barbulescu L. , & Smith S. (2007). Understanding performance tradeoffs in algorithms for solving oversubscribed scheduling. Proc. 22nd Conf. Artificial Intelligence, AAAI-07, Vancouver. es_ES
dc.description.references Seow, Y., & Rahimifard, S. (2011). A framework for modelling energy consumption within manufacturing systems. CIRP Journal of Manufacturing Science and Technology, 4(3), 258-264. doi:10.1016/j.cirpj.2011.03.007 es_ES
dc.description.references Li, W., Zein, A., Kara, S., & Herrmann, C. (2011). An Investigation into Fixed Energy Consumption of Machine Tools. Glocalized Solutions for Sustainability in Manufacturing, 268-273. doi:10.1007/978-3-642-19692-8_47 es_ES
dc.description.references Szathmáry, E. (2006). A robust approach. Nature, 439(7072), 19-20. doi:10.1038/439019a es_ES
dc.description.references Fang, K., Uhan, N., Zhao, F., & Sutherland, J. W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234-240. doi:10.1016/j.jmsy.2011.08.004 es_ES
dc.description.references Gutowski, T., Murphy, C., Allen, D., Bauer, D., Bras, B., Piwonka, T., … Wolff, E. (2005). Environmentally benign manufacturing: Observations from Japan, Europe and the United States. Journal of Cleaner Production, 13(1), 1-17. doi:10.1016/j.jclepro.2003.10.004 es_ES
dc.description.references Garrido A. , Salido M.A. , Barber F. , & López M.A. (2000). Heuristic methods for solving job-shop scheduling problems. Proc. ECAI-2000 Workshop on New Results in Planning, Scheduling and Design, Berlín. es_ES
dc.description.references Verfaillie G. , & Schiex T. (1994). Solution reuse in dynamic constraint satisfaction problems. Proc. 12th National Conf. Artificial Intelligence, AAAI-94. es_ES
dc.description.references Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418-429. doi:10.1016/j.rcim.2013.04.001 es_ES
dc.description.references Neugebauer, R., Wabner, M., Rentzsch, H., & Ihlenfeldt, S. (2011). Structure principles of energy efficient machine tools. CIRP Journal of Manufacturing Science and Technology, 4(2), 136-147. doi:10.1016/j.cirpj.2011.06.017 es_ES
dc.description.references Mouzon, G., & Yildirim, M. B. (2008). A framework to minimise total energy consumption and total tardiness on a single machine. International Journal of Sustainable Engineering, 1(2), 105-116. doi:10.1080/19397030802257236 es_ES
dc.description.references Bruzzone, A. A. G., Anghinolfi, D., Paolucci, M., & Tonelli, F. (2012). Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Annals, 61(1), 459-462. doi:10.1016/j.cirp.2012.03.084 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem