- -

Energy efficiency, robustness, and makespan optimality in job-shop scheduling problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Energy efficiency, robustness, and makespan optimality in job-shop scheduling problems

Mostrar el registro completo del ítem

Salido Gregorio, MA.; Escamilla Fuster, J.; Barber Sanchís, F.; Giret Boggino, AS.; Tang, D.; Dai, M. (2015). Energy efficiency, robustness, and makespan optimality in job-shop scheduling problems. AI EDAM. 30(3):300-312. https://doi.org/10.1017/S0890060415000335

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/69097

Ficheros en el ítem

Metadatos del ítem

Título: Energy efficiency, robustness, and makespan optimality in job-shop scheduling problems
Autor: Salido Gregorio, Miguel Angel Escamilla Fuster, Joan Barber Sanchís, Federico Giret Boggino, Adriana Susana Tang, Dunbing Dai, Min
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Many real-world problems are known as planning and scheduling problems, where resources must be allocated so as to optimize overall performance objectives. The traditional scheduling models consider performance ...[+]
Palabras clave: Energy Efficiency , Job-Shop Scheduling , Parameter Relationship , Robustness
Derechos de uso: Reserva de todos los derechos
Fuente:
AI EDAM. (issn: 0890-0604 ) (eissn: 1469-1760 )
DOI: 10.1017/S0890060415000335
Editorial:
Cambridge University Press (CUP): STM Journals
Versión del editor: http://dx.doi.org/10.1017/S0890060415000335
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2013-46511-C2-1-P/ES/TECNICAS INTELIGENTES PARA LA OBTENCION DE SOLUCIONES ROBUSTAS Y EFICIENTES ENERGETICAMENTE EN SCHEDULING: APLICACION AL TRANSPORTE::UPV/
info:eu-repo/grantAgreement/EC/FP7/294931/EU/Customised Advisory Services for Energy-efficient Manufacturing Systems/
info:eu-repo/grantAgreement/NSFC//51175262/
info:eu-repo/grantAgreement/EC/FP7/609491/EU/Technology Transfer in Computing Systems/
Agradecimientos:
This research has been supported by the Spanish Government under research project MICINN TIN2013-46511-C2-1-P, the European CASES project (No. 294931) supported by a Marie Curie International Research Staff Exchange Scheme ...[+]
Tipo: Artículo

References

Billaut, J.-C., Moukrim, A., & Sanlaville, E. (Eds.). (2008). Flexibility and Robustness in Scheduling. doi:10.1002/9780470611432

Nowicki, E., & Smutnicki, C. (2005). An Advanced Tabu Search Algorithm for the Job Shop Problem. Journal of Scheduling, 8(2), 145-159. doi:10.1007/s10951-005-6364-5

Agnetis, A., Flamini, M., Nicosia, G., & Pacifici, A. (2010). A job-shop problem with one additional resource type. Journal of Scheduling, 14(3), 225-237. doi:10.1007/s10951-010-0162-4 [+]
Billaut, J.-C., Moukrim, A., & Sanlaville, E. (Eds.). (2008). Flexibility and Robustness in Scheduling. doi:10.1002/9780470611432

Nowicki, E., & Smutnicki, C. (2005). An Advanced Tabu Search Algorithm for the Job Shop Problem. Journal of Scheduling, 8(2), 145-159. doi:10.1007/s10951-005-6364-5

Agnetis, A., Flamini, M., Nicosia, G., & Pacifici, A. (2010). A job-shop problem with one additional resource type. Journal of Scheduling, 14(3), 225-237. doi:10.1007/s10951-010-0162-4

Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18-19), 4247-4271. doi:10.1080/00207540701450013

Weinert, N., Chiotellis, S., & Seliger, G. (2011). Methodology for planning and operating energy-efficient production systems. CIRP Annals, 60(1), 41-44. doi:10.1016/j.cirp.2011.03.015

Duflou, J. R., Sutherland, J. W., Dornfeld, D., Herrmann, C., Jeswiet, J., Kara, S., … Kellens, K. (2012). Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Annals, 61(2), 587-609. doi:10.1016/j.cirp.2012.05.002

Laborie P. (2009). IBM ILOG CP Optimizer for detailed scheduling illustrated on three problems. Proc. 6th Int. Conf. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR09.

Dahmus J. , & Gutowski T. (2004). An environmental analysis of machining. Proc. ASME Int. Mechanical Engineering Congr. RD&D Exposition, Anaheim, CA.

Huang, K.-L., & Liao, C.-J. (2008). Ant colony optimization combined with taboo search for the job shop scheduling problem. Computers & Operations Research, 35(4), 1030-1046. doi:10.1016/j.cor.2006.07.003

IBM. (2010). Modeling With IBM ILOG CP Optimizer—Practical Scheduling Examples (white paper). Armonk, NY: IBM Software Group.

Kramer L. , Barbulescu L. , & Smith S. (2007). Understanding performance tradeoffs in algorithms for solving oversubscribed scheduling. Proc. 22nd Conf. Artificial Intelligence, AAAI-07, Vancouver.

Seow, Y., & Rahimifard, S. (2011). A framework for modelling energy consumption within manufacturing systems. CIRP Journal of Manufacturing Science and Technology, 4(3), 258-264. doi:10.1016/j.cirpj.2011.03.007

Li, W., Zein, A., Kara, S., & Herrmann, C. (2011). An Investigation into Fixed Energy Consumption of Machine Tools. Glocalized Solutions for Sustainability in Manufacturing, 268-273. doi:10.1007/978-3-642-19692-8_47

Szathmáry, E. (2006). A robust approach. Nature, 439(7072), 19-20. doi:10.1038/439019a

Fang, K., Uhan, N., Zhao, F., & Sutherland, J. W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234-240. doi:10.1016/j.jmsy.2011.08.004

Gutowski, T., Murphy, C., Allen, D., Bauer, D., Bras, B., Piwonka, T., … Wolff, E. (2005). Environmentally benign manufacturing: Observations from Japan, Europe and the United States. Journal of Cleaner Production, 13(1), 1-17. doi:10.1016/j.jclepro.2003.10.004

Garrido A. , Salido M.A. , Barber F. , & López M.A. (2000). Heuristic methods for solving job-shop scheduling problems. Proc. ECAI-2000 Workshop on New Results in Planning, Scheduling and Design, Berlín.

Verfaillie G. , & Schiex T. (1994). Solution reuse in dynamic constraint satisfaction problems. Proc. 12th National Conf. Artificial Intelligence, AAAI-94.

Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418-429. doi:10.1016/j.rcim.2013.04.001

Neugebauer, R., Wabner, M., Rentzsch, H., & Ihlenfeldt, S. (2011). Structure principles of energy efficient machine tools. CIRP Journal of Manufacturing Science and Technology, 4(2), 136-147. doi:10.1016/j.cirpj.2011.06.017

Mouzon, G., & Yildirim, M. B. (2008). A framework to minimise total energy consumption and total tardiness on a single machine. International Journal of Sustainable Engineering, 1(2), 105-116. doi:10.1080/19397030802257236

Bruzzone, A. A. G., Anghinolfi, D., Paolucci, M., & Tonelli, F. (2012). Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Annals, 61(1), 459-462. doi:10.1016/j.cirp.2012.03.084

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem