- -

Solving the Pertubed Quantum Harmonic Oscillator in Imaginary Time Using Splitting Methods with Complex Coefficients

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving the Pertubed Quantum Harmonic Oscillator in Imaginary Time Using Splitting Methods with Complex Coefficients

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bader, Philipp es_ES
dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.editor Fernando Casas es_ES
dc.contributor.editor Vicente Martínez es_ES
dc.date.accessioned 2016-09-08T10:50:56Z
dc.date.available 2016-09-08T10:50:56Z
dc.date.issued 2014
dc.identifier.isbn 978-3-319-06952-4
dc.identifier.issn 2199-3041
dc.identifier.uri http://hdl.handle.net/10251/69100
dc.description.abstract [EN] Efficient splitting algorithms for the Schrödinger eigenvalue problem with perturbed harmonic oscillator potentials in higher dimensions are considered. The separability of the Hamiltonian makes the problem suitable for the application of splitting methods. Using algebraic techniques, we show how to apply Fourier spectral methods to propagate higher dimensional quantum harmonic oscillators, thus retaining the near integrable structure and fast computability. This methods is then used to solve the eigenvalue problem by imaginary time propagation. High order fractional time steps of order greater than two necessarily have negative steps and can not be used for this class of diffusive problems. However, the use of fractional complex time steps with positive real parts does not negatively impact on stability and only moderately increases the computational cost. We analyze the performance of this class of schemes and propose new highly optimized sixth-order schemes for near integrable systems which outperform the existing ones in most cases. es_ES
dc.description.sponsorship We wish to acknowledge Ander Murua and Joseba Makazaga for providing the methods T869 and V869. This work has been partially supported by Ministerio de Ciencia e Innovación (Spain) under project MTM2010-18246-C03. P.B. also acknowledges the support through the FPU fellowship AP2009-1892.
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Advances in Differential Equations and Applications es_ES
dc.relation.ispartofseries SEMA SIMAI Springer Series;
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Solving the Pertubed Quantum Harmonic Oscillator in Imaginary Time Using Splitting Methods with Complex Coefficients es_ES
dc.type Artículo es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso
dc.identifier.doi 10.1007/978-3-319-06953-1_21
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//AP2009-1892/ES/AP2009-1892/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bader, P.; Blanes Zamora, S. (2014). Solving the Pertubed Quantum Harmonic Oscillator in Imaginary Time Using Splitting Methods with Complex Coefficients. Advances in Differential Equations and Applications. 4:217-227. https://doi.org/10.1007/978-3-319-06953-1_21 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 23rd Congress on Differential Equations and Applications (CEDYA) / 13th Congress of Applied Mathematics (CMA)
dc.relation.conferencedate September 09-13, 2013
dc.relation.conferenceplace Castellón, Spain
dc.relation.publisherversion http://dx.doi.org/10.1007/978-3-319-06953-1_21 es_ES
dc.description.upvformatpinicio 217 es_ES
dc.description.upvformatpfin 227 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.relation.senia 280786 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Ministerio de Educación, Cultura y Deporte
dc.description.references Aichinger, M., Krotscheck, E.: A fast configuration space method for solving local Kohn–Sham equations. Comput. Mater. Sci. 34, 183–212 (2005) es_ES
dc.description.references Auer, J., Krotscheck, E., Chin, S.A.: A fourth-order real-space algorithm for solving local Schrödinger equations. J. Chem. Phys. 115, 6841–6846 (2001) es_ES
dc.description.references Bader, P., Blanes, S.: Fourier methods for the perturbed harmonic oscillator in linear and nonlinear Schrödinger equations. Phys. Rev. E. 83, 046711 (2011) es_ES
dc.description.references Bader, P., Blanes, S., Casas, F.: Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients. J. Chem. Phys. 139, 124117 (2013) es_ES
dc.description.references Bandrauk, A.D., Dehghanian, E., Lu, H.: Complex integration steps in decomposition of quantum evolution operators. Chem. Phys. Lett. 419, 346–350 (2006) es_ES
dc.description.references Bandrauk, A.D., Lu, H.: Exponential propagators (integrators) for the time-dependent Schrödinger equation. J. Theor. Comput. Chem. 12, 1340001 (2013) es_ES
dc.description.references Blanes, S., Casas, F.: On the necessity of negative coefficients for operator splitting schemes of order higher than two. Appl. Numer. Math. 54, 23–37 (2005) es_ES
dc.description.references Blanes, S., Casas, F., Chartier, P., Murua, A.: Optimized high-order splitting methods for some classes of parabolic equations. Math. Comput. 82, 1559–1576 (2013) es_ES
dc.description.references Castella, F., Chartier, P., Descombes, S., Vilmart, G.: Splitting methods with complex times for parabolic equations. BIT 49, 486–508 (2009) es_ES
dc.description.references Chambers, J.E.: Symplectic integrators with complex time steps. Astron. J. 126, 1119–1126 (2003) es_ES
dc.description.references Chin, S.A., Krotscheck, E.: Fourth-order algorithms for solving imaginary-time Gross-Pitaevskii equation in a rotating anisotropic trap. Phys. Rev. E. 72, 036705 (2005) es_ES
dc.description.references Chin, S. A., Janecek, S., Krotscheck, E.: Any order imaginary time propagation method for solving the Schrödinger equation. Chem. Phys. Lett. 470, 342–346 (2009) es_ES
dc.description.references Goldman, D., Kaper, T.J.: nth-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal. 33, 349–367 (1996) es_ES
dc.description.references Hansen, E., Ostermann, A.: High order splitting methods for analytic semigroups exist. BIT 49, 527–542 (2009) es_ES
dc.description.references Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013) es_ES
dc.description.references Janecek S., Krotscheck, E.: A fast and simple program for solving local Schrödinger equations in two and three dimensions. Comput. Phys. Commun. 178, 835–842 (2008) es_ES
dc.description.references Lehtovaara, L., Toivanen, J., Eloranta, J.: Solution of time-independent Schrödinger equation by the imaginary time propagation method. J. Comput. Phys. 221, 148–157 (2007) es_ES
dc.description.references McLachlan, R.I.: Composition methods in the presence of small parameters. BIT 35, 258–268 (1995) es_ES
dc.description.references Roy, A.K., Gupta, N., Deb, B.M.: Time-dependent quantum-mechanical calculation of ground and excited states of anharmonic and double-well oscillators. Phys. Rev. A. 65, 012109 (2001) es_ES
dc.description.references Sheng, Q.: Solving linear partial differential equations by exponential splitting. IMA J. Numer. Anal. 9, 199–212 (1989) es_ES
dc.description.references Suzuki, M.: General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32, 400–407 (1991) es_ES
dc.description.references Wilcox, R.M.: Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 8, 962–982 (1967) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem