- -

Solving the Pertubed Quantum Harmonic Oscillator in Imaginary Time Using Splitting Methods with Complex Coefficients

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving the Pertubed Quantum Harmonic Oscillator in Imaginary Time Using Splitting Methods with Complex Coefficients

Mostrar el registro completo del ítem

Bader, P.; Blanes Zamora, S. (2014). Solving the Pertubed Quantum Harmonic Oscillator in Imaginary Time Using Splitting Methods with Complex Coefficients. Advances in Differential Equations and Applications. 4:217-227. https://doi.org/10.1007/978-3-319-06953-1_21

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/69100

Ficheros en el ítem

Metadatos del ítem

Título: Solving the Pertubed Quantum Harmonic Oscillator in Imaginary Time Using Splitting Methods with Complex Coefficients
Autor: Bader, Philipp Blanes Zamora, Sergio
Editor: Fernando Casas Vicente Martínez
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Efficient splitting algorithms for the Schrödinger eigenvalue problem with perturbed harmonic oscillator potentials in higher dimensions are considered. The separability of the Hamiltonian makes the problem suitable ...[+]
Derechos de uso: Cerrado
ISBN: 978-3-319-06952-4
Fuente:
Advances in Differential Equations and Applications. (issn: 2199-3041 )
DOI: 10.1007/978-3-319-06953-1_21
Editorial:
Springer
Versión del editor: http://dx.doi.org/10.1007/978-3-319-06953-1_21
Título del congreso: 23rd Congress on Differential Equations and Applications (CEDYA) / 13th Congress of Applied Mathematics (CMA)
Lugar del congreso: Castellón, Spain
Fecha congreso: September 09-13, 2013
Serie: SEMA SIMAI Springer Series;
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03/
info:eu-repo/grantAgreement/MECD//AP2009-1892/ES/AP2009-1892/
Agradecimientos:
We wish to acknowledge Ander Murua and Joseba Makazaga for providing the methods T869 and V869. This work has been partially supported by Ministerio de Ciencia e Innovación (Spain) under project MTM2010-18246-C03. P.B. ...[+]
Tipo: Artículo Capítulo de libro Comunicación en congreso

References

Aichinger, M., Krotscheck, E.: A fast configuration space method for solving local Kohn–Sham equations. Comput. Mater. Sci. 34, 183–212 (2005)

Auer, J., Krotscheck, E., Chin, S.A.: A fourth-order real-space algorithm for solving local Schrödinger equations. J. Chem. Phys. 115, 6841–6846 (2001)

Bader, P., Blanes, S.: Fourier methods for the perturbed harmonic oscillator in linear and nonlinear Schrödinger equations. Phys. Rev. E. 83, 046711 (2011) [+]
Aichinger, M., Krotscheck, E.: A fast configuration space method for solving local Kohn–Sham equations. Comput. Mater. Sci. 34, 183–212 (2005)

Auer, J., Krotscheck, E., Chin, S.A.: A fourth-order real-space algorithm for solving local Schrödinger equations. J. Chem. Phys. 115, 6841–6846 (2001)

Bader, P., Blanes, S.: Fourier methods for the perturbed harmonic oscillator in linear and nonlinear Schrödinger equations. Phys. Rev. E. 83, 046711 (2011)

Bader, P., Blanes, S., Casas, F.: Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients. J. Chem. Phys. 139, 124117 (2013)

Bandrauk, A.D., Dehghanian, E., Lu, H.: Complex integration steps in decomposition of quantum evolution operators. Chem. Phys. Lett. 419, 346–350 (2006)

Bandrauk, A.D., Lu, H.: Exponential propagators (integrators) for the time-dependent Schrödinger equation. J. Theor. Comput. Chem. 12, 1340001 (2013)

Blanes, S., Casas, F.: On the necessity of negative coefficients for operator splitting schemes of order higher than two. Appl. Numer. Math. 54, 23–37 (2005)

Blanes, S., Casas, F., Chartier, P., Murua, A.: Optimized high-order splitting methods for some classes of parabolic equations. Math. Comput. 82, 1559–1576 (2013)

Castella, F., Chartier, P., Descombes, S., Vilmart, G.: Splitting methods with complex times for parabolic equations. BIT 49, 486–508 (2009)

Chambers, J.E.: Symplectic integrators with complex time steps. Astron. J. 126, 1119–1126 (2003)

Chin, S.A., Krotscheck, E.: Fourth-order algorithms for solving imaginary-time Gross-Pitaevskii equation in a rotating anisotropic trap. Phys. Rev. E. 72, 036705 (2005)

Chin, S. A., Janecek, S., Krotscheck, E.: Any order imaginary time propagation method for solving the Schrödinger equation. Chem. Phys. Lett. 470, 342–346 (2009)

Goldman, D., Kaper, T.J.: nth-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal. 33, 349–367 (1996)

Hansen, E., Ostermann, A.: High order splitting methods for analytic semigroups exist. BIT 49, 527–542 (2009)

Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

Janecek S., Krotscheck, E.: A fast and simple program for solving local Schrödinger equations in two and three dimensions. Comput. Phys. Commun. 178, 835–842 (2008)

Lehtovaara, L., Toivanen, J., Eloranta, J.: Solution of time-independent Schrödinger equation by the imaginary time propagation method. J. Comput. Phys. 221, 148–157 (2007)

McLachlan, R.I.: Composition methods in the presence of small parameters. BIT 35, 258–268 (1995)

Roy, A.K., Gupta, N., Deb, B.M.: Time-dependent quantum-mechanical calculation of ground and excited states of anharmonic and double-well oscillators. Phys. Rev. A. 65, 012109 (2001)

Sheng, Q.: Solving linear partial differential equations by exponential splitting. IMA J. Numer. Anal. 9, 199–212 (1989)

Suzuki, M.: General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32, 400–407 (1991)

Wilcox, R.M.: Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 8, 962–982 (1967)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem