Alemany S, González JC, Nácher B, Soriano C, Arnáiz C, Heras H (2010) Anthropometric survey of the spanish female population aimed at the apparel industry. In: Proceedings of the 2010 Intl Conference on 3D Body scanning Technologies, Lugano, Switzerland, pp 1–10
Amaral G, Dore L, Lessa R, Stosic B (2010) k-means algorithm in statistical shape analysis. Commun Stat Simul Comput 39(5):1016–1026
Anderberg M (1973) Cluster analysis for applications. Academic Press, New York
[+]
Alemany S, González JC, Nácher B, Soriano C, Arnáiz C, Heras H (2010) Anthropometric survey of the spanish female population aimed at the apparel industry. In: Proceedings of the 2010 Intl Conference on 3D Body scanning Technologies, Lugano, Switzerland, pp 1–10
Amaral G, Dore L, Lessa R, Stosic B (2010) k-means algorithm in statistical shape analysis. Commun Stat Simul Comput 39(5):1016–1026
Anderberg M (1973) Cluster analysis for applications. Academic Press, New York
Best D, Fisher N (1979) Efficient simulation of the von mises distribution. J R Stat Soc Ser C (Appl Stat) 28(2):152–157
Bhattacharya R, Patrangenaru V (2002) Nonparametric estimation of location and dispersion on riemannian manifolds. J Stat Plann Inference 108:23–35
Bhattacharya R, Patrangenaru V (2003) Large sample theory of intrinsic and extrinsic sample means on manifolds. Ann Stat 31(1):1–29
Bock HH (2007) Clustering methods: a history of k-means algorithms. In: Brito P, Bertrand P, Cucumel G, de Carvalho F (eds) Selected contributions in data analysis and classification. Springer, Berlin Heidelberg, pp 161–172
Bock HH (2008) Origins and extensions of the k-means algorithm in cluster analysis. Electron J Hist Prob Stat 4(2):1–18
Cai X, Li Z, Chang CC, Dempsey P (2005) Analysis of alignment influence on 3-D anthropometric statistics. Tsinghua Sci Technol 10(5):623–626
Chernoff H (1970) Metric considerations in cluster analysis. In: Proc. 6th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, pp 621–629
Chung M, Lina H, Wang MJJ (2007) The development of sizing systems for taiwanese elementary- and high-school students. Int J Ind Ergon 37:707–716
Claude J (2008) Morphometrics with R. use R!. Springer, New York
Dryden IE, Mardia KV (1998) Statistical shape analysis. Wiley, Chichester
Dryden IL (2012) Shapes package. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org , contributed package
European Committee for Standardization. European Standard EN 13402–2: Size system of clothing. Primary and secondary dimensions (2002)
Fletcher P, Lu C, Pizer S, Joshi S (2004) Principal geodesic analysis for the study of nonlinear statistics of shape. Med Imaging IEEE Trans 23:995–1005
Fréchet M (1948) Les éléments aléatoires de nature quelconque dans un espace distancié. Ann Inst Henri Poincare Prob Stat 10(4):215–310
García-Escudero LA, Gordaliza A (1999) Robustness properties of k-means and trimmed k-means. J Am Stat Assoc 94(447):956–969
Georgescu V (2009) Clustering of fuzzy shapes by integrating Procrustean metrics and full mean shape estimation into k-means algorithm. In: IFSA-EUSFLAT Conference (Lisbon, Portugal), pp 1679–1684
Hand DJ, Krzanowski WJ (2005) Optimising k-means clustering results with standard software packages. Comput Stat Data Anal 49:969.973 short communication
Hartiga JA, Wong MA (1979) A K-means clustering algorithm. Appl Stat 100–108
Hastie T, Tibshirani R, Friedman J (2008) The elements of statistical learning. Springer, New York
Ibáñez MV, Vinué G, Alemany S, Simó A, Epifanio I, Domingo J, Ayala G (2012) Apparel sizing using trimmed PAM and OWA operators. Expert Syst Appl 39:10,512–10,520
Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recognit Lett 31:651–666
Kanungo T, Mount DM, Netanyahu NS, Piatko C, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892
Karcher H (1977) Riemannian center of mass and mollifier smoothing. Commun Pure Appl Math 30(5):509–541
Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York
Kendall D (1977) The diffusion of shape. Adv Appl Prob 9:428–430
Kendall DG, Barden D, Carne T, Le H (2009) Shape and shape theory. Wiley, Chichester
Kendall WS (1990) Probability, convexity, and harmonic maps with small image i: uniqueness and fine existence. Proc Lond Math Soc 3(2):371–406
Kent J, Mardia K (1997) Consistency of procrustes estimators. J R Stat Soc Ser B 59(1):281–290
Kobayashi S, Nomizu K (1969) Foundations of differential geometry, vol 2. Wiley, Chichester
Lawing A, Polly P (2010) Geometric morphometrics: recent applications to the study of evolution and development. J Zool 280(1):1–7
Le H (1998) On the consistency of Procrustean mean shapes. Adv Appl Prob 30(1):53–63
Lloyd SP (1957) Least squares quantization in pcm. bell telephone labs memorandum, murray hill, nj. reprinted. In: IEEE Trans Information Theory IT-28 (1982) 2:129–137
MacQueen J (1967) Some methoods for classification and analysis of mulivariate observations. In: Proc 5th Berkely Symp Math Statist Probab. Univ of California Press B (ed) 1965/66, vol 1, pp 281–297
Nazeer KAA, Sebastian MP (2009) Improving the accuracy and efficiency of the k-means clustering algorithm. In: Proceedings of the World Congress on Engineering (London, UK), pp 1–5
Ng R, Ashdown S, Chan A (2007) Intelligent size table generation. Sen’i Gakkaishi (J Soc Fiber Sci Technol Jpn) 63(11):384–387
Pennec X (2006) Intrinsic statistics on riemannian manifolds: basic tools for geometric measurements. J Math Imaging Vis 25(1):127–154
Qiu W, Joe H (2013) ClusterGeneration: random cluster generation (with specified degree of separation. http://CRAN.R-project.org/package=clusterGeneration , R package version 1.3.1
R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org , ISBN 3-900051-07-0
Rohlf JF (1999) Shape statistics: Procrustes superimpositions and tangent spaces. J Classif 16:197–223
S-plus original by Ulric Lund and R port by Claudio Agostinelli (2012) CircStats: Circular Statistics, from “Topics in circular Statistics” (2001). http://CRAN.R-project.org/package=CircStats , R package version 0.2–4
Simmons K (2002) Body shape analysis using three-dimensional body scanning technology. PhD thesis, North Carolina State University
Small C (1996) The statistical theory of shape. Springer, New York
Sokal R, Sneath PH (1963) Principles of numerical taxonomy. Freeman, San Francisco
Steinhaus H (1956) Sur la division des corps matériels en parties. Bull Acad Pol Sci IV(12):801–804
Steinley D (2006) K-means clustering: a half-century synthesis. Br J Math Stat Psychol 59:1–34
Stoyan LA, Stoyan H (1995) Fractals, random shapes and point fields. Wiley, Chichester
Theodoridis S, Koutroumbas K (1999) Pattern recognition. Academic, New York
Veitch D, Fitzgerald C et al (2013) Sizing up Australia—the next step. Safe Work Australia, Canberra
Vinué G, Epifanio I, Simó A, Ibáñez MV, Domingo J, Ayala G (2014) Anthropometry: an R Package for analysis of anthropometric data. http://CRAN.R-project.org/package=Anthropometry , R package version 1.0
Woods R (2003) Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation. NeuroImage 18:769–788
Zheng R, Yu W, Fan J (2007) Development of a new chinese bra sizing system based on breast anthropometric measurements. Int J Ind Ergon 37:697–705
[-]