- -

The k-means algorithm for 3D shapes with an application to apparel design

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The k-means algorithm for 3D shapes with an application to apparel design

Mostrar el registro completo del ítem

Vinue, G.; Simo, A.; Alemany Mut, MS. (2016). The k-means algorithm for 3D shapes with an application to apparel design. Advances in Data Analysis and Classification. 10(1):103-132. doi:10.1007/s11634-014-0187-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/69475

Ficheros en el ítem

Metadatos del ítem

Título: The k-means algorithm for 3D shapes with an application to apparel design
Autor: Vinue, Guillermo Simo, Amelia Alemany Mut, Mª Sandra
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biomecánica de Valencia - Institut Universitari Mixt de Biomecànica de València
Fecha difusión:
Resumen:
Clustering of objects according to shapes is of key importance in many scientific fields. In this paper we focus on the case where the shape of an object is represented by a configuration matrix of landmarks. It is well ...[+]
Palabras clave: Shape space , Statistical shape analysis , k-means algorithm , Procrustes type distances , Procrustes mean shape , Sizing systems
Derechos de uso: Cerrado
Fuente:
Advances in Data Analysis and Classification. (issn: 1862-5355 )
DOI: 10.1007/s11634-014-0187-1
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s11634-014-0187-1
Tipo: Artículo

References

Alemany S, González JC, Nácher B, Soriano C, Arnáiz C, Heras H (2010) Anthropometric survey of the spanish female population aimed at the apparel industry. In: Proceedings of the 2010 Intl Conference on 3D Body scanning Technologies, Lugano, Switzerland, pp 1–10

Amaral G, Dore L, Lessa R, Stosic B (2010) k-means algorithm in statistical shape analysis. Commun Stat Simul Comput 39(5):1016–1026

Anderberg M (1973) Cluster analysis for applications. Academic Press, New York [+]
Alemany S, González JC, Nácher B, Soriano C, Arnáiz C, Heras H (2010) Anthropometric survey of the spanish female population aimed at the apparel industry. In: Proceedings of the 2010 Intl Conference on 3D Body scanning Technologies, Lugano, Switzerland, pp 1–10

Amaral G, Dore L, Lessa R, Stosic B (2010) k-means algorithm in statistical shape analysis. Commun Stat Simul Comput 39(5):1016–1026

Anderberg M (1973) Cluster analysis for applications. Academic Press, New York

Best D, Fisher N (1979) Efficient simulation of the von mises distribution. J R Stat Soc Ser C (Appl Stat) 28(2):152–157

Bhattacharya R, Patrangenaru V (2002) Nonparametric estimation of location and dispersion on riemannian manifolds. J Stat Plann Inference 108:23–35

Bhattacharya R, Patrangenaru V (2003) Large sample theory of intrinsic and extrinsic sample means on manifolds. Ann Stat 31(1):1–29

Bock HH (2007) Clustering methods: a history of k-means algorithms. In: Brito P, Bertrand P, Cucumel G, de Carvalho F (eds) Selected contributions in data analysis and classification. Springer, Berlin Heidelberg, pp 161–172

Bock HH (2008) Origins and extensions of the k-means algorithm in cluster analysis. Electron J Hist Prob Stat 4(2):1–18

Cai X, Li Z, Chang CC, Dempsey P (2005) Analysis of alignment influence on 3-D anthropometric statistics. Tsinghua Sci Technol 10(5):623–626

Chernoff H (1970) Metric considerations in cluster analysis. In: Proc. 6th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, pp 621–629

Chung M, Lina H, Wang MJJ (2007) The development of sizing systems for taiwanese elementary- and high-school students. Int J Ind Ergon 37:707–716

Claude J (2008) Morphometrics with R. use R!. Springer, New York

Dryden IE, Mardia KV (1998) Statistical shape analysis. Wiley, Chichester

Dryden IL (2012) Shapes package. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org , contributed package

European Committee for Standardization. European Standard EN 13402–2: Size system of clothing. Primary and secondary dimensions (2002)

Fletcher P, Lu C, Pizer S, Joshi S (2004) Principal geodesic analysis for the study of nonlinear statistics of shape. Med Imaging IEEE Trans 23:995–1005

Fréchet M (1948) Les éléments aléatoires de nature quelconque dans un espace distancié. Ann Inst Henri Poincare Prob Stat 10(4):215–310

García-Escudero LA, Gordaliza A (1999) Robustness properties of k-means and trimmed k-means. J Am Stat Assoc 94(447):956–969

Georgescu V (2009) Clustering of fuzzy shapes by integrating Procrustean metrics and full mean shape estimation into k-means algorithm. In: IFSA-EUSFLAT Conference (Lisbon, Portugal), pp 1679–1684

Hand DJ, Krzanowski WJ (2005) Optimising k-means clustering results with standard software packages. Comput Stat Data Anal 49:969.973 short communication

Hartiga JA, Wong MA (1979) A K-means clustering algorithm. Appl Stat 100–108

Hastie T, Tibshirani R, Friedman J (2008) The elements of statistical learning. Springer, New York

Ibáñez MV, Vinué G, Alemany S, Simó A, Epifanio I, Domingo J, Ayala G (2012) Apparel sizing using trimmed PAM and OWA operators. Expert Syst Appl 39:10,512–10,520

Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recognit Lett 31:651–666

Kanungo T, Mount DM, Netanyahu NS, Piatko C, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892

Karcher H (1977) Riemannian center of mass and mollifier smoothing. Commun Pure Appl Math 30(5):509–541

Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

Kendall D (1977) The diffusion of shape. Adv Appl Prob 9:428–430

Kendall DG, Barden D, Carne T, Le H (2009) Shape and shape theory. Wiley, Chichester

Kendall WS (1990) Probability, convexity, and harmonic maps with small image i: uniqueness and fine existence. Proc Lond Math Soc 3(2):371–406

Kent J, Mardia K (1997) Consistency of procrustes estimators. J R Stat Soc Ser B 59(1):281–290

Kobayashi S, Nomizu K (1969) Foundations of differential geometry, vol 2. Wiley, Chichester

Lawing A, Polly P (2010) Geometric morphometrics: recent applications to the study of evolution and development. J Zool 280(1):1–7

Le H (1998) On the consistency of Procrustean mean shapes. Adv Appl Prob 30(1):53–63

Lloyd SP (1957) Least squares quantization in pcm. bell telephone labs memorandum, murray hill, nj. reprinted. In: IEEE Trans Information Theory IT-28 (1982) 2:129–137

MacQueen J (1967) Some methoods for classification and analysis of mulivariate observations. In: Proc 5th Berkely Symp Math Statist Probab. Univ of California Press B (ed) 1965/66, vol 1, pp 281–297

Nazeer KAA, Sebastian MP (2009) Improving the accuracy and efficiency of the k-means clustering algorithm. In: Proceedings of the World Congress on Engineering (London, UK), pp 1–5

Ng R, Ashdown S, Chan A (2007) Intelligent size table generation. Sen’i Gakkaishi (J Soc Fiber Sci Technol Jpn) 63(11):384–387

Pennec X (2006) Intrinsic statistics on riemannian manifolds: basic tools for geometric measurements. J Math Imaging Vis 25(1):127–154

Qiu W, Joe H (2013) ClusterGeneration: random cluster generation (with specified degree of separation. http://CRAN.R-project.org/package=clusterGeneration , R package version 1.3.1

R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org , ISBN 3-900051-07-0

Rohlf JF (1999) Shape statistics: Procrustes superimpositions and tangent spaces. J Classif 16:197–223

S-plus original by Ulric Lund and R port by Claudio Agostinelli (2012) CircStats: Circular Statistics, from “Topics in circular Statistics” (2001). http://CRAN.R-project.org/package=CircStats , R package version 0.2–4

Simmons K (2002) Body shape analysis using three-dimensional body scanning technology. PhD thesis, North Carolina State University

Small C (1996) The statistical theory of shape. Springer, New York

Sokal R, Sneath PH (1963) Principles of numerical taxonomy. Freeman, San Francisco

Steinhaus H (1956) Sur la division des corps matériels en parties. Bull Acad Pol Sci IV(12):801–804

Steinley D (2006) K-means clustering: a half-century synthesis. Br J Math Stat Psychol 59:1–34

Stoyan LA, Stoyan H (1995) Fractals, random shapes and point fields. Wiley, Chichester

Theodoridis S, Koutroumbas K (1999) Pattern recognition. Academic, New York

Veitch D, Fitzgerald C et al (2013) Sizing up Australia—the next step. Safe Work Australia, Canberra

Vinué G, Epifanio I, Simó A, Ibáñez MV, Domingo J, Ayala G (2014) Anthropometry: an R Package for analysis of anthropometric data. http://CRAN.R-project.org/package=Anthropometry , R package version 1.0

Woods R (2003) Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation. NeuroImage 18:769–788

Zheng R, Yu W, Fan J (2007) Development of a new chinese bra sizing system based on breast anthropometric measurements. Int J Ind Ergon 37:697–705

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem