- -

The k-means algorithm for 3D shapes with an application to apparel design

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The k-means algorithm for 3D shapes with an application to apparel design

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vinue, Guillermo es_ES
dc.contributor.author Simo, Amelia es_ES
dc.contributor.author Alemany Mut, Mª Sandra es_ES
dc.date.accessioned 2016-09-14T10:41:21Z
dc.date.available 2016-09-14T10:41:21Z
dc.date.issued 2016-03
dc.identifier.issn 1862-5355
dc.identifier.uri http://hdl.handle.net/10251/69475
dc.description.abstract Clustering of objects according to shapes is of key importance in many scientific fields. In this paper we focus on the case where the shape of an object is represented by a configuration matrix of landmarks. It is well known that this shape space has a finite-dimensional Riemannian manifold structure (non-Euclidean) which makes it difficult to work with. Papers about clustering on this space are scarce in the literature. The basic foundation of the -means algorithm is the fact that the sample mean is the value that minimizes the Euclidean distance from each point to the centroid of the cluster to which it belongs, so, our idea is integrating the Procrustes type distances and Procrustes mean into the -means algorithm to adapt it to the shape analysis context. As far as we know, there have been just two attempts in that way. In this paper we propose to adapt the classical -means Lloyd algorithm to the context of Shape Analysis, focusing on the three dimensional case. We present a study comparing its performance with the Hartigan-Wong -means algorithm, one that was previously adapted to the field of Statistical Shape Analysis. We demonstrate the better performance of the Lloyd version and, finally, we propose to add a trimmed procedure. We apply both to a 3D database obtained from an anthropometric survey of the Spanish female population conducted in this country in 2006. The algorithms presented in this paper are available in the Anthropometry R package, whose most current version is always available from the Comprehensive R Archive Network. es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Advances in Data Analysis and Classification es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Shape space es_ES
dc.subject Statistical shape analysis es_ES
dc.subject k-means algorithm es_ES
dc.subject Procrustes type distances es_ES
dc.subject Procrustes mean shape es_ES
dc.subject Sizing systems es_ES
dc.title The k-means algorithm for 3D shapes with an application to apparel design es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11634-014-0187-1
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biomecánica de Valencia - Institut Universitari Mixt de Biomecànica de València es_ES
dc.description.bibliographicCitation Vinue, G.; Simo, A.; Alemany Mut, MS. (2016). The k-means algorithm for 3D shapes with an application to apparel design. Advances in Data Analysis and Classification. 10(1):103-132. doi:10.1007/s11634-014-0187-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11634-014-0187-1 es_ES
dc.description.upvformatpinicio 103 es_ES
dc.description.upvformatpfin 132 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 286768 es_ES
dc.description.references Alemany S, González JC, Nácher B, Soriano C, Arnáiz C, Heras H (2010) Anthropometric survey of the spanish female population aimed at the apparel industry. In: Proceedings of the 2010 Intl Conference on 3D Body scanning Technologies, Lugano, Switzerland, pp 1–10 es_ES
dc.description.references Amaral G, Dore L, Lessa R, Stosic B (2010) k-means algorithm in statistical shape analysis. Commun Stat Simul Comput 39(5):1016–1026 es_ES
dc.description.references Anderberg M (1973) Cluster analysis for applications. Academic Press, New York es_ES
dc.description.references Best D, Fisher N (1979) Efficient simulation of the von mises distribution. J R Stat Soc Ser C (Appl Stat) 28(2):152–157 es_ES
dc.description.references Bhattacharya R, Patrangenaru V (2002) Nonparametric estimation of location and dispersion on riemannian manifolds. J Stat Plann Inference 108:23–35 es_ES
dc.description.references Bhattacharya R, Patrangenaru V (2003) Large sample theory of intrinsic and extrinsic sample means on manifolds. Ann Stat 31(1):1–29 es_ES
dc.description.references Bock HH (2007) Clustering methods: a history of k-means algorithms. In: Brito P, Bertrand P, Cucumel G, de Carvalho F (eds) Selected contributions in data analysis and classification. Springer, Berlin Heidelberg, pp 161–172 es_ES
dc.description.references Bock HH (2008) Origins and extensions of the k-means algorithm in cluster analysis. Electron J Hist Prob Stat 4(2):1–18 es_ES
dc.description.references Cai X, Li Z, Chang CC, Dempsey P (2005) Analysis of alignment influence on 3-D anthropometric statistics. Tsinghua Sci Technol 10(5):623–626 es_ES
dc.description.references Chernoff H (1970) Metric considerations in cluster analysis. In: Proc. 6th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, pp 621–629 es_ES
dc.description.references Chung M, Lina H, Wang MJJ (2007) The development of sizing systems for taiwanese elementary- and high-school students. Int J Ind Ergon 37:707–716 es_ES
dc.description.references Claude J (2008) Morphometrics with R. use R!. Springer, New York es_ES
dc.description.references Dryden IE, Mardia KV (1998) Statistical shape analysis. Wiley, Chichester es_ES
dc.description.references Dryden IL (2012) Shapes package. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org , contributed package es_ES
dc.description.references European Committee for Standardization. European Standard EN 13402–2: Size system of clothing. Primary and secondary dimensions (2002) es_ES
dc.description.references Fletcher P, Lu C, Pizer S, Joshi S (2004) Principal geodesic analysis for the study of nonlinear statistics of shape. Med Imaging IEEE Trans 23:995–1005 es_ES
dc.description.references Fréchet M (1948) Les éléments aléatoires de nature quelconque dans un espace distancié. Ann Inst Henri Poincare Prob Stat 10(4):215–310 es_ES
dc.description.references García-Escudero LA, Gordaliza A (1999) Robustness properties of k-means and trimmed k-means. J Am Stat Assoc 94(447):956–969 es_ES
dc.description.references Georgescu V (2009) Clustering of fuzzy shapes by integrating Procrustean metrics and full mean shape estimation into k-means algorithm. In: IFSA-EUSFLAT Conference (Lisbon, Portugal), pp 1679–1684 es_ES
dc.description.references Hand DJ, Krzanowski WJ (2005) Optimising k-means clustering results with standard software packages. Comput Stat Data Anal 49:969.973 short communication es_ES
dc.description.references Hartiga JA, Wong MA (1979) A K-means clustering algorithm. Appl Stat 100–108 es_ES
dc.description.references Hastie T, Tibshirani R, Friedman J (2008) The elements of statistical learning. Springer, New York es_ES
dc.description.references Ibáñez MV, Vinué G, Alemany S, Simó A, Epifanio I, Domingo J, Ayala G (2012) Apparel sizing using trimmed PAM and OWA operators. Expert Syst Appl 39:10,512–10,520 es_ES
dc.description.references Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recognit Lett 31:651–666 es_ES
dc.description.references Kanungo T, Mount DM, Netanyahu NS, Piatko C, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892 es_ES
dc.description.references Karcher H (1977) Riemannian center of mass and mollifier smoothing. Commun Pure Appl Math 30(5):509–541 es_ES
dc.description.references Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York es_ES
dc.description.references Kendall D (1977) The diffusion of shape. Adv Appl Prob 9:428–430 es_ES
dc.description.references Kendall DG, Barden D, Carne T, Le H (2009) Shape and shape theory. Wiley, Chichester es_ES
dc.description.references Kendall WS (1990) Probability, convexity, and harmonic maps with small image i: uniqueness and fine existence. Proc Lond Math Soc 3(2):371–406 es_ES
dc.description.references Kent J, Mardia K (1997) Consistency of procrustes estimators. J R Stat Soc Ser B 59(1):281–290 es_ES
dc.description.references Kobayashi S, Nomizu K (1969) Foundations of differential geometry, vol 2. Wiley, Chichester es_ES
dc.description.references Lawing A, Polly P (2010) Geometric morphometrics: recent applications to the study of evolution and development. J Zool 280(1):1–7 es_ES
dc.description.references Le H (1998) On the consistency of Procrustean mean shapes. Adv Appl Prob 30(1):53–63 es_ES
dc.description.references Lloyd SP (1957) Least squares quantization in pcm. bell telephone labs memorandum, murray hill, nj. reprinted. In: IEEE Trans Information Theory IT-28 (1982) 2:129–137 es_ES
dc.description.references MacQueen J (1967) Some methoods for classification and analysis of mulivariate observations. In: Proc 5th Berkely Symp Math Statist Probab. Univ of California Press B (ed) 1965/66, vol 1, pp 281–297 es_ES
dc.description.references Nazeer KAA, Sebastian MP (2009) Improving the accuracy and efficiency of the k-means clustering algorithm. In: Proceedings of the World Congress on Engineering (London, UK), pp 1–5 es_ES
dc.description.references Ng R, Ashdown S, Chan A (2007) Intelligent size table generation. Sen’i Gakkaishi (J Soc Fiber Sci Technol Jpn) 63(11):384–387 es_ES
dc.description.references Pennec X (2006) Intrinsic statistics on riemannian manifolds: basic tools for geometric measurements. J Math Imaging Vis 25(1):127–154 es_ES
dc.description.references Qiu W, Joe H (2013) ClusterGeneration: random cluster generation (with specified degree of separation. http://CRAN.R-project.org/package=clusterGeneration , R package version 1.3.1 es_ES
dc.description.references R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org , ISBN 3-900051-07-0 es_ES
dc.description.references Rohlf JF (1999) Shape statistics: Procrustes superimpositions and tangent spaces. J Classif 16:197–223 es_ES
dc.description.references S-plus original by Ulric Lund and R port by Claudio Agostinelli (2012) CircStats: Circular Statistics, from “Topics in circular Statistics” (2001). http://CRAN.R-project.org/package=CircStats , R package version 0.2–4 es_ES
dc.description.references Simmons K (2002) Body shape analysis using three-dimensional body scanning technology. PhD thesis, North Carolina State University es_ES
dc.description.references Small C (1996) The statistical theory of shape. Springer, New York es_ES
dc.description.references Sokal R, Sneath PH (1963) Principles of numerical taxonomy. Freeman, San Francisco es_ES
dc.description.references Steinhaus H (1956) Sur la division des corps matériels en parties. Bull Acad Pol Sci IV(12):801–804 es_ES
dc.description.references Steinley D (2006) K-means clustering: a half-century synthesis. Br J Math Stat Psychol 59:1–34 es_ES
dc.description.references Stoyan LA, Stoyan H (1995) Fractals, random shapes and point fields. Wiley, Chichester es_ES
dc.description.references Theodoridis S, Koutroumbas K (1999) Pattern recognition. Academic, New York es_ES
dc.description.references Veitch D, Fitzgerald C et al (2013) Sizing up Australia—the next step. Safe Work Australia, Canberra es_ES
dc.description.references Vinué G, Epifanio I, Simó A, Ibáñez MV, Domingo J, Ayala G (2014) Anthropometry: an R Package for analysis of anthropometric data. http://CRAN.R-project.org/package=Anthropometry , R package version 1.0 es_ES
dc.description.references Woods R (2003) Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation. NeuroImage 18:769–788 es_ES
dc.description.references Zheng R, Yu W, Fan J (2007) Development of a new chinese bra sizing system based on breast anthropometric measurements. Int J Ind Ergon 37:697–705 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem