Mostrar el registro sencillo del ítem
dc.contributor.author | Rodrigo Tarrega, Guillermo![]() |
es_ES |
dc.contributor.author | Zwart, Mark Peter![]() |
es_ES |
dc.contributor.author | Elena Fito, Santiago Fco![]() |
es_ES |
dc.date.accessioned | 2016-09-15T11:12:47Z | |
dc.date.available | 2016-09-15T11:12:47Z | |
dc.date.issued | 2014-09-06 | |
dc.identifier.issn | 1742-5689 | |
dc.identifier.uri | http://hdl.handle.net/10251/69742 | |
dc.description.abstract | The cornerstone of today's plant virology consists of deciphering the molecular and mechanistic basis of host-pathogen interactions. Among these interactions, the onset of systemic infection is a fundamental variable in studying both within-and between-host infection dynamics, with implications in epidemiology. Here, we developed a mechanistic model using probabilistic and spatio-temporal concepts to explain dynamic signatures of virus systemic infection. The model dealt with the inherent characteristic of plant viruses to use two different and sequential stages for their within-host propagation: cell-to-cell movement from the initial infected cell and systemic spread by reaching the vascular system. We identified the speed of cell-to-cell movement and the number of primary infection foci in the inoculated leaf as the key factors governing this dynamic process. Our results allowed us to quantitatively understand the timing of the onset of systemic infection, describing this global process as a consequence of local spread of viral populations. Finally, we considered the significance of our predictions for the evolution of plant RNA viruses. | es_ES |
dc.description.sponsorship | This work was supported by the grant no. BFU2012-30805 from Spain Ministerio de Economia y Competitividad (MINECO) to S. F. E. G. R. was supported by an EMBO long-term fellowship co-funded by Marie Curie actions (ALTF-1177-2011) and an AXA post-doctoral fellowship, and M.P.Z. by a Juan de la Cierva post-doctoral contract (JCI-2011-10379) from MINECO. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society Publishing | es_ES |
dc.relation.ispartof | Interface | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Local versus global infection | es_ES |
dc.subject | Systems biology of virus infection | es_ES |
dc.subject | Virus evolution | es_ES |
dc.subject | Within-host virus dynamics | es_ES |
dc.title | Onset of virus systemic infection in plants is determined by speed of cell-to-cell movement and number of primary infection foci | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1098/rsif.2014.0555 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/Marie Skłodowska-Curie Actions/ALTF-1177-2011/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//JCI-2011-10379/ES/JCI-2011-10379/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Rodrigo Tarrega, G.; Zwart, MP.; Elena Fito, SF. (2014). Onset of virus systemic infection in plants is determined by speed of cell-to-cell movement and number of primary infection foci. Interface. 11(98):1-8. https://doi.org/10.1098/rsif.2014.0555 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1098/rsif.2014.0555 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 98 | es_ES |
dc.relation.senia | 280714 | es_ES |
dc.identifier.pmcid | PMC4233706 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Molecular Biology Organization | es_ES |
dc.contributor.funder | AXA Research Fund | es_ES |
dc.description.references | Waigmann, E., Ueki, S., Trutnyeva, K., & Citovsky, V. (2004). The Ins and Outs of Nondestructive Cell-to-Cell and Systemic Movement of Plant Viruses. Critical Reviews in Plant Sciences, 23(3), 195-250. doi:10.1080/07352680490452807 | es_ES |
dc.description.references | Waterhouse, P. M., Wang, M.-B., & Lough, T. (2001). Gene silencing as an adaptive defence against viruses. Nature, 411(6839), 834-842. doi:10.1038/35081168 | es_ES |
dc.description.references | Dunoyer, P., Lecellier, C.-H., Parizotto, E. A., Himber, C., & Voinnet, O. (2004). RETRACTED: Probing the MicroRNA and Small Interfering RNA Pathways with Virus-Encoded Suppressors of RNA Silencing. The Plant Cell, 16(5), 1235-1250. doi:10.1105/tpc.020719 | es_ES |
dc.description.references | Kermack, W. O., & McKendrick, A. G. (1927). A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 115(772), 700-721. doi:10.1098/rspa.1927.0118 | es_ES |
dc.description.references | Segarra, J., Jeger, M. J., & van den Bosch, F. (2001). Epidemic Dynamics and Patterns of Plant Diseases. Phytopathology, 91(10), 1001-1010. doi:10.1094/phyto.2001.91.10.1001 | es_ES |
dc.description.references | Keeling, M. (2005). The implications of network structure for epidemic dynamics. Theoretical Population Biology, 67(1), 1-8. doi:10.1016/j.tpb.2004.08.002 | es_ES |
dc.description.references | Dolja, V. V., McBride, H. J., & Carrington, J. C. (1992). Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proceedings of the National Academy of Sciences, 89(21), 10208-10212. doi:10.1073/pnas.89.21.10208 | es_ES |
dc.description.references | Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2011). One Is Enough: In Vivo Effective Population Size Is Dose-Dependent for a Plant RNA Virus. PLoS Pathogens, 7(7), e1002122. doi:10.1371/journal.ppat.1002122 | es_ES |
dc.description.references | Bedoya, L. C., Martínez, F., Orzáez, D., & Daròs, J.-A. (2012). Visual Tracking of Plant Virus Infection and Movement Using a Reporter MYB Transcription Factor That Activates Anthocyanin Biosynthesis. Plant Physiology, 158(3), 1130-1138. doi:10.1104/pp.111.192922 | es_ES |
dc.description.references | Lafforgue, G., Tromas, N., Elena, S. F., & Zwart, M. P. (2012). Dynamics of the Establishment of Systemic Potyvirus Infection: Independent yet Cumulative Action of Primary Infection Sites. Journal of Virology, 86(23), 12912-12922. doi:10.1128/jvi.02207-12 | es_ES |
dc.description.references | Holmes, F. O. (1929). Local Lesions in Tobacco Mosaic. Botanical Gazette, 87(1), 39-55. doi:10.1086/333923 | es_ES |
dc.description.references | BALD, J. G. (1937). THE USE OF NUMBERS OF INFECTIONS FOR COMPARING THE CONCENTRATION OF PLANT VIRUS SUSPENSIONS: DILUTION EXPERIMENTS WITH PURIFIED SUSPENSIONS. Annals of Applied Biology, 24(1), 33-55. doi:10.1111/j.1744-7348.1937.tb05019.x | es_ES |
dc.description.references | Baulcombe, D. (2004). RNA silencing in plants. Nature, 431(7006), 356-363. doi:10.1038/nature02874 | es_ES |
dc.description.references | Kunkel, B. N., & Brooks, D. M. (2002). Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 5(4), 325-331. doi:10.1016/s1369-5266(02)00275-3 | es_ES |
dc.description.references | Kørner, C. J., Klauser, D., Niehl, A., Domínguez-Ferreras, A., Chinchilla, D., Boller, T., … Hann, D. R. (2013). The Immunity Regulator BAK1 Contributes to Resistance Against Diverse RNA Viruses. Molecular Plant-Microbe Interactions, 26(11), 1271-1280. doi:10.1094/mpmi-06-13-0179-r | es_ES |
dc.description.references | Rodrigo, G., Carrera, J., Jaramillo, A., & Elena, S. F. (2010). Optimal viral strategies for bypassing RNA silencing. Journal of The Royal Society Interface, 8(55), 257-268. doi:10.1098/rsif.2010.0264 | es_ES |
dc.description.references | Kleczkowski, A. (1950). Interpreting Relationships between the Concentrations of Plant Viruses and Numbers of Local Lesions. Journal of General Microbiology, 4(1), 53-69. doi:10.1099/00221287-4-1-53 | es_ES |
dc.description.references | Van der Plank, J. E. (1965). Dynamics of Epidemics of Plant Disease: Population bursts of fungi, bacteria, or viruses in field and forest make an interesting dynamical study. Science, 147(3654), 120-124. doi:10.1126/science.147.3654.120 | es_ES |
dc.description.references | Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2012). Effects of Potyvirus Effective Population Size in Inoculated Leaves on Viral Accumulation and the Onset of Symptoms. Journal of Virology, 86(18), 9737-9747. doi:10.1128/jvi.00909-12 | es_ES |
dc.description.references | Carrington, J. C., Kasschau, K. D., Mahajan, S. K., & Schaad, M. C. (1996). Cell-to-Cell and Long-Distance Transport of Viruses in Plants. The Plant Cell, 1669-1681. doi:10.1105/tpc.8.10.1669 | es_ES |
dc.description.references | Gibbs, A. (1976). Viruses and Plasmodesmata. Intercellular Communication in Plants: Studies on Plasmodesmata, 149-164. doi:10.1007/978-3-642-66294-2_8 | es_ES |
dc.description.references | Hillung, J., Elena, S. F., & Cuevas, J. M. (2013). Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses. BMC Evolutionary Biology, 13(1), 249. doi:10.1186/1471-2148-13-249 | es_ES |
dc.description.references | Dengler, N., & Kang, J. (2001). Vascular patterning and leaf shape. Current Opinion in Plant Biology, 4(1), 50-56. doi:10.1016/s1369-5266(00)00135-7 | es_ES |
dc.description.references | SAMUEL, G. (1934). The Movement of Tobacco Mosaic Virus Within the Plant. Annals of Applied Biology, 21(1), 90-111. doi:10.1111/j.1744-7348.1934.tb06891.x | es_ES |
dc.description.references | Kawakami, S., Watanabe, Y., & Beachy, R. N. (2004). Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proceedings of the National Academy of Sciences, 101(16), 6291-6296. doi:10.1073/pnas.0401221101 | es_ES |
dc.description.references | Bedoya, L., Martínez, F., Rubio, L., & Daròs, J.-A. (2010). Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. Journal of Biotechnology, 150(2), 268-275. doi:10.1016/j.jbiotec.2010.08.006 | es_ES |
dc.description.references | Wei, T., Zhang, C., Hong, J., Xiong, R., Kasschau, K. D., Zhou, X., … Wang, A. (2010). Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein P3N-PIPO. PLoS Pathogens, 6(6), e1000962. doi:10.1371/journal.ppat.1000962 | es_ES |
dc.description.references | Bragard, C., Caciagli, P., Lemaire, O., Lopez-Moya, J. J., MacFarlane, S., Peters, D., … Torrance, L. (2013). Status and Prospects of Plant Virus Control Through Interference with Vector Transmission. Annual Review of Phytopathology, 51(1), 177-201. doi:10.1146/annurev-phyto-082712-102346 | es_ES |
dc.description.references | Sacristan, S., Diaz, M., Fraile, A., & Garcia-Arenal, F. (2011). Contact Transmission of Tobacco Mosaic Virus: a Quantitative Analysis of Parameters Relevant for Virus Evolution. Journal of Virology, 85(10), 4974-4981. doi:10.1128/jvi.00057-11 | es_ES |
dc.description.references | Sanchez-Navarro, J. A., Zwart, M. P., & Elena, S. F. (2013). Effects of the Number of Genome Segments on Primary and Systemic Infections with a Multipartite Plant RNA Virus. Journal of Virology, 87(19), 10805-10815. doi:10.1128/jvi.01402-13 | es_ES |