- -

Onset of virus systemic infection in plants is determined by speed of cell-to-cell movement and number of primary infection foci

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Onset of virus systemic infection in plants is determined by speed of cell-to-cell movement and number of primary infection foci

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodrigo Tarrega, Guillermo es_ES
dc.contributor.author Zwart, Mark Peter es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.date.accessioned 2016-09-15T11:12:47Z
dc.date.available 2016-09-15T11:12:47Z
dc.date.issued 2014-09-06
dc.identifier.issn 1742-5689
dc.identifier.uri http://hdl.handle.net/10251/69742
dc.description.abstract The cornerstone of today's plant virology consists of deciphering the molecular and mechanistic basis of host-pathogen interactions. Among these interactions, the onset of systemic infection is a fundamental variable in studying both within-and between-host infection dynamics, with implications in epidemiology. Here, we developed a mechanistic model using probabilistic and spatio-temporal concepts to explain dynamic signatures of virus systemic infection. The model dealt with the inherent characteristic of plant viruses to use two different and sequential stages for their within-host propagation: cell-to-cell movement from the initial infected cell and systemic spread by reaching the vascular system. We identified the speed of cell-to-cell movement and the number of primary infection foci in the inoculated leaf as the key factors governing this dynamic process. Our results allowed us to quantitatively understand the timing of the onset of systemic infection, describing this global process as a consequence of local spread of viral populations. Finally, we considered the significance of our predictions for the evolution of plant RNA viruses. es_ES
dc.description.sponsorship This work was supported by the grant no. BFU2012-30805 from Spain Ministerio de Economia y Competitividad (MINECO) to S. F. E. G. R. was supported by an EMBO long-term fellowship co-funded by Marie Curie actions (ALTF-1177-2011) and an AXA post-doctoral fellowship, and M.P.Z. by a Juan de la Cierva post-doctoral contract (JCI-2011-10379) from MINECO. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society Publishing es_ES
dc.relation.ispartof Interface es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Local versus global infection es_ES
dc.subject Systems biology of virus infection es_ES
dc.subject Virus evolution es_ES
dc.subject Within-host virus dynamics es_ES
dc.title Onset of virus systemic infection in plants is determined by speed of cell-to-cell movement and number of primary infection foci es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1098/rsif.2014.0555
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/Marie Skłodowska-Curie Actions/ALTF-1177-2011/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//JCI-2011-10379/ES/JCI-2011-10379/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Rodrigo Tarrega, G.; Zwart, MP.; Elena Fito, SF. (2014). Onset of virus systemic infection in plants is determined by speed of cell-to-cell movement and number of primary infection foci. Interface. 11(98):1-8. https://doi.org/10.1098/rsif.2014.0555 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1098/rsif.2014.0555 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 98 es_ES
dc.relation.senia 280714 es_ES
dc.identifier.pmcid PMC4233706 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Molecular Biology Organization es_ES
dc.contributor.funder AXA Research Fund es_ES
dc.description.references Waigmann, E., Ueki, S., Trutnyeva, K., & Citovsky, V. (2004). The Ins and Outs of Nondestructive Cell-to-Cell and Systemic Movement of Plant Viruses. Critical Reviews in Plant Sciences, 23(3), 195-250. doi:10.1080/07352680490452807 es_ES
dc.description.references Waterhouse, P. M., Wang, M.-B., & Lough, T. (2001). Gene silencing as an adaptive defence against viruses. Nature, 411(6839), 834-842. doi:10.1038/35081168 es_ES
dc.description.references Dunoyer, P., Lecellier, C.-H., Parizotto, E. A., Himber, C., & Voinnet, O. (2004). RETRACTED: Probing the MicroRNA and Small Interfering RNA Pathways with Virus-Encoded Suppressors of RNA Silencing. The Plant Cell, 16(5), 1235-1250. doi:10.1105/tpc.020719 es_ES
dc.description.references Kermack, W. O., & McKendrick, A. G. (1927). A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 115(772), 700-721. doi:10.1098/rspa.1927.0118 es_ES
dc.description.references Segarra, J., Jeger, M. J., & van den Bosch, F. (2001). Epidemic Dynamics and Patterns of Plant Diseases. Phytopathology, 91(10), 1001-1010. doi:10.1094/phyto.2001.91.10.1001 es_ES
dc.description.references Keeling, M. (2005). The implications of network structure for epidemic dynamics. Theoretical Population Biology, 67(1), 1-8. doi:10.1016/j.tpb.2004.08.002 es_ES
dc.description.references Dolja, V. V., McBride, H. J., & Carrington, J. C. (1992). Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proceedings of the National Academy of Sciences, 89(21), 10208-10212. doi:10.1073/pnas.89.21.10208 es_ES
dc.description.references Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2011). One Is Enough: In Vivo Effective Population Size Is Dose-Dependent for a Plant RNA Virus. PLoS Pathogens, 7(7), e1002122. doi:10.1371/journal.ppat.1002122 es_ES
dc.description.references Bedoya, L. C., Martínez, F., Orzáez, D., & Daròs, J.-A. (2012). Visual Tracking of Plant Virus Infection and Movement Using a Reporter MYB Transcription Factor That Activates Anthocyanin Biosynthesis. Plant Physiology, 158(3), 1130-1138. doi:10.1104/pp.111.192922 es_ES
dc.description.references Lafforgue, G., Tromas, N., Elena, S. F., & Zwart, M. P. (2012). Dynamics of the Establishment of Systemic Potyvirus Infection: Independent yet Cumulative Action of Primary Infection Sites. Journal of Virology, 86(23), 12912-12922. doi:10.1128/jvi.02207-12 es_ES
dc.description.references Holmes, F. O. (1929). Local Lesions in Tobacco Mosaic. Botanical Gazette, 87(1), 39-55. doi:10.1086/333923 es_ES
dc.description.references BALD, J. G. (1937). THE USE OF NUMBERS OF INFECTIONS FOR COMPARING THE CONCENTRATION OF PLANT VIRUS SUSPENSIONS: DILUTION EXPERIMENTS WITH PURIFIED SUSPENSIONS. Annals of Applied Biology, 24(1), 33-55. doi:10.1111/j.1744-7348.1937.tb05019.x es_ES
dc.description.references Baulcombe, D. (2004). RNA silencing in plants. Nature, 431(7006), 356-363. doi:10.1038/nature02874 es_ES
dc.description.references Kunkel, B. N., & Brooks, D. M. (2002). Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 5(4), 325-331. doi:10.1016/s1369-5266(02)00275-3 es_ES
dc.description.references Kørner, C. J., Klauser, D., Niehl, A., Domínguez-Ferreras, A., Chinchilla, D., Boller, T., … Hann, D. R. (2013). The Immunity Regulator BAK1 Contributes to Resistance Against Diverse RNA Viruses. Molecular Plant-Microbe Interactions, 26(11), 1271-1280. doi:10.1094/mpmi-06-13-0179-r es_ES
dc.description.references Rodrigo, G., Carrera, J., Jaramillo, A., & Elena, S. F. (2010). Optimal viral strategies for bypassing RNA silencing. Journal of The Royal Society Interface, 8(55), 257-268. doi:10.1098/rsif.2010.0264 es_ES
dc.description.references Kleczkowski, A. (1950). Interpreting Relationships between the Concentrations of Plant Viruses and Numbers of Local Lesions. Journal of General Microbiology, 4(1), 53-69. doi:10.1099/00221287-4-1-53 es_ES
dc.description.references Van der Plank, J. E. (1965). Dynamics of Epidemics of Plant Disease: Population bursts of fungi, bacteria, or viruses in field and forest make an interesting dynamical study. Science, 147(3654), 120-124. doi:10.1126/science.147.3654.120 es_ES
dc.description.references Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2012). Effects of Potyvirus Effective Population Size in Inoculated Leaves on Viral Accumulation and the Onset of Symptoms. Journal of Virology, 86(18), 9737-9747. doi:10.1128/jvi.00909-12 es_ES
dc.description.references Carrington, J. C., Kasschau, K. D., Mahajan, S. K., & Schaad, M. C. (1996). Cell-to-Cell and Long-Distance Transport of Viruses in Plants. The Plant Cell, 1669-1681. doi:10.1105/tpc.8.10.1669 es_ES
dc.description.references Gibbs, A. (1976). Viruses and Plasmodesmata. Intercellular Communication in Plants: Studies on Plasmodesmata, 149-164. doi:10.1007/978-3-642-66294-2_8 es_ES
dc.description.references Hillung, J., Elena, S. F., & Cuevas, J. M. (2013). Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses. BMC Evolutionary Biology, 13(1), 249. doi:10.1186/1471-2148-13-249 es_ES
dc.description.references Dengler, N., & Kang, J. (2001). Vascular patterning and leaf shape. Current Opinion in Plant Biology, 4(1), 50-56. doi:10.1016/s1369-5266(00)00135-7 es_ES
dc.description.references SAMUEL, G. (1934). The Movement of Tobacco Mosaic Virus Within the Plant. Annals of Applied Biology, 21(1), 90-111. doi:10.1111/j.1744-7348.1934.tb06891.x es_ES
dc.description.references Kawakami, S., Watanabe, Y., & Beachy, R. N. (2004). Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proceedings of the National Academy of Sciences, 101(16), 6291-6296. doi:10.1073/pnas.0401221101 es_ES
dc.description.references Bedoya, L., Martínez, F., Rubio, L., & Daròs, J.-A. (2010). Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. Journal of Biotechnology, 150(2), 268-275. doi:10.1016/j.jbiotec.2010.08.006 es_ES
dc.description.references Wei, T., Zhang, C., Hong, J., Xiong, R., Kasschau, K. D., Zhou, X., … Wang, A. (2010). Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein P3N-PIPO. PLoS Pathogens, 6(6), e1000962. doi:10.1371/journal.ppat.1000962 es_ES
dc.description.references Bragard, C., Caciagli, P., Lemaire, O., Lopez-Moya, J. J., MacFarlane, S., Peters, D., … Torrance, L. (2013). Status and Prospects of Plant Virus Control Through Interference with Vector Transmission. Annual Review of Phytopathology, 51(1), 177-201. doi:10.1146/annurev-phyto-082712-102346 es_ES
dc.description.references Sacristan, S., Diaz, M., Fraile, A., & Garcia-Arenal, F. (2011). Contact Transmission of Tobacco Mosaic Virus: a Quantitative Analysis of Parameters Relevant for Virus Evolution. Journal of Virology, 85(10), 4974-4981. doi:10.1128/jvi.00057-11 es_ES
dc.description.references Sanchez-Navarro, J. A., Zwart, M. P., & Elena, S. F. (2013). Effects of the Number of Genome Segments on Primary and Systemic Infections with a Multipartite Plant RNA Virus. Journal of Virology, 87(19), 10805-10815. doi:10.1128/jvi.01402-13 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem