- -

Onset of virus systemic infection in plants is determined by speed of cell-to-cell movement and number of primary infection foci

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Onset of virus systemic infection in plants is determined by speed of cell-to-cell movement and number of primary infection foci

Mostrar el registro completo del ítem

Rodrigo Tarrega, G.; Zwart, MP.; Elena Fito, SF. (2014). Onset of virus systemic infection in plants is determined by speed of cell-to-cell movement and number of primary infection foci. Interface. 11(98):1-8. https://doi.org/10.1098/rsif.2014.0555

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/69742

Ficheros en el ítem

Metadatos del ítem

Título: Onset of virus systemic infection in plants is determined by speed of cell-to-cell movement and number of primary infection foci
Autor: Rodrigo Tarrega, Guillermo Zwart, Mark Peter Elena Fito, Santiago Fco
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
The cornerstone of today's plant virology consists of deciphering the molecular and mechanistic basis of host-pathogen interactions. Among these interactions, the onset of systemic infection is a fundamental variable in ...[+]
Palabras clave: Local versus global infection , Systems biology of virus infection , Virus evolution , Within-host virus dynamics
Derechos de uso: Reserva de todos los derechos
Fuente:
Interface. (issn: 1742-5689 )
DOI: 10.1098/rsif.2014.0555
Editorial:
Royal Society Publishing
Versión del editor: http://dx.doi.org/10.1098/rsif.2014.0555
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/
info:eu-repo/grantAgreement/EC/Marie Skłodowska-Curie Actions/ALTF-1177-2011/
info:eu-repo/grantAgreement/MICINN//JCI-2011-10379/ES/JCI-2011-10379/
Agradecimientos:
This work was supported by the grant no. BFU2012-30805 from Spain Ministerio de Economia y Competitividad (MINECO) to S. F. E. G. R. was supported by an EMBO long-term fellowship co-funded by Marie Curie actions (ALTF-1177-2011) ...[+]
Tipo: Artículo

References

Waigmann, E., Ueki, S., Trutnyeva, K., & Citovsky, V. (2004). The Ins and Outs of Nondestructive Cell-to-Cell and Systemic Movement of Plant Viruses. Critical Reviews in Plant Sciences, 23(3), 195-250. doi:10.1080/07352680490452807

Waterhouse, P. M., Wang, M.-B., & Lough, T. (2001). Gene silencing as an adaptive defence against viruses. Nature, 411(6839), 834-842. doi:10.1038/35081168

Dunoyer, P., Lecellier, C.-H., Parizotto, E. A., Himber, C., & Voinnet, O. (2004). RETRACTED: Probing the MicroRNA and Small Interfering RNA Pathways with Virus-Encoded Suppressors of RNA Silencing. The Plant Cell, 16(5), 1235-1250. doi:10.1105/tpc.020719 [+]
Waigmann, E., Ueki, S., Trutnyeva, K., & Citovsky, V. (2004). The Ins and Outs of Nondestructive Cell-to-Cell and Systemic Movement of Plant Viruses. Critical Reviews in Plant Sciences, 23(3), 195-250. doi:10.1080/07352680490452807

Waterhouse, P. M., Wang, M.-B., & Lough, T. (2001). Gene silencing as an adaptive defence against viruses. Nature, 411(6839), 834-842. doi:10.1038/35081168

Dunoyer, P., Lecellier, C.-H., Parizotto, E. A., Himber, C., & Voinnet, O. (2004). RETRACTED: Probing the MicroRNA and Small Interfering RNA Pathways with Virus-Encoded Suppressors of RNA Silencing. The Plant Cell, 16(5), 1235-1250. doi:10.1105/tpc.020719

Kermack, W. O., & McKendrick, A. G. (1927). A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 115(772), 700-721. doi:10.1098/rspa.1927.0118

Segarra, J., Jeger, M. J., & van den Bosch, F. (2001). Epidemic Dynamics and Patterns of Plant Diseases. Phytopathology, 91(10), 1001-1010. doi:10.1094/phyto.2001.91.10.1001

Keeling, M. (2005). The implications of network structure for epidemic dynamics. Theoretical Population Biology, 67(1), 1-8. doi:10.1016/j.tpb.2004.08.002

Dolja, V. V., McBride, H. J., & Carrington, J. C. (1992). Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proceedings of the National Academy of Sciences, 89(21), 10208-10212. doi:10.1073/pnas.89.21.10208

Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2011). One Is Enough: In Vivo Effective Population Size Is Dose-Dependent for a Plant RNA Virus. PLoS Pathogens, 7(7), e1002122. doi:10.1371/journal.ppat.1002122

Bedoya, L. C., Martínez, F., Orzáez, D., & Daròs, J.-A. (2012). Visual Tracking of Plant Virus Infection and Movement Using a Reporter MYB Transcription Factor That Activates Anthocyanin Biosynthesis. Plant Physiology, 158(3), 1130-1138. doi:10.1104/pp.111.192922

Lafforgue, G., Tromas, N., Elena, S. F., & Zwart, M. P. (2012). Dynamics of the Establishment of Systemic Potyvirus Infection: Independent yet Cumulative Action of Primary Infection Sites. Journal of Virology, 86(23), 12912-12922. doi:10.1128/jvi.02207-12

Holmes, F. O. (1929). Local Lesions in Tobacco Mosaic. Botanical Gazette, 87(1), 39-55. doi:10.1086/333923

BALD, J. G. (1937). THE USE OF NUMBERS OF INFECTIONS FOR COMPARING THE CONCENTRATION OF PLANT VIRUS SUSPENSIONS: DILUTION EXPERIMENTS WITH PURIFIED SUSPENSIONS. Annals of Applied Biology, 24(1), 33-55. doi:10.1111/j.1744-7348.1937.tb05019.x

Baulcombe, D. (2004). RNA silencing in plants. Nature, 431(7006), 356-363. doi:10.1038/nature02874

Kunkel, B. N., & Brooks, D. M. (2002). Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 5(4), 325-331. doi:10.1016/s1369-5266(02)00275-3

Kørner, C. J., Klauser, D., Niehl, A., Domínguez-Ferreras, A., Chinchilla, D., Boller, T., … Hann, D. R. (2013). The Immunity Regulator BAK1 Contributes to Resistance Against Diverse RNA Viruses. Molecular Plant-Microbe Interactions, 26(11), 1271-1280. doi:10.1094/mpmi-06-13-0179-r

Rodrigo, G., Carrera, J., Jaramillo, A., & Elena, S. F. (2010). Optimal viral strategies for bypassing RNA silencing. Journal of The Royal Society Interface, 8(55), 257-268. doi:10.1098/rsif.2010.0264

Kleczkowski, A. (1950). Interpreting Relationships between the Concentrations of Plant Viruses and Numbers of Local Lesions. Journal of General Microbiology, 4(1), 53-69. doi:10.1099/00221287-4-1-53

Van der Plank, J. E. (1965). Dynamics of Epidemics of Plant Disease: Population bursts of fungi, bacteria, or viruses in field and forest make an interesting dynamical study. Science, 147(3654), 120-124. doi:10.1126/science.147.3654.120

Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2012). Effects of Potyvirus Effective Population Size in Inoculated Leaves on Viral Accumulation and the Onset of Symptoms. Journal of Virology, 86(18), 9737-9747. doi:10.1128/jvi.00909-12

Carrington, J. C., Kasschau, K. D., Mahajan, S. K., & Schaad, M. C. (1996). Cell-to-Cell and Long-Distance Transport of Viruses in Plants. The Plant Cell, 1669-1681. doi:10.1105/tpc.8.10.1669

Gibbs, A. (1976). Viruses and Plasmodesmata. Intercellular Communication in Plants: Studies on Plasmodesmata, 149-164. doi:10.1007/978-3-642-66294-2_8

Hillung, J., Elena, S. F., & Cuevas, J. M. (2013). Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses. BMC Evolutionary Biology, 13(1), 249. doi:10.1186/1471-2148-13-249

Dengler, N., & Kang, J. (2001). Vascular patterning and leaf shape. Current Opinion in Plant Biology, 4(1), 50-56. doi:10.1016/s1369-5266(00)00135-7

SAMUEL, G. (1934). The Movement of Tobacco Mosaic Virus Within the Plant. Annals of Applied Biology, 21(1), 90-111. doi:10.1111/j.1744-7348.1934.tb06891.x

Kawakami, S., Watanabe, Y., & Beachy, R. N. (2004). Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proceedings of the National Academy of Sciences, 101(16), 6291-6296. doi:10.1073/pnas.0401221101

Bedoya, L., Martínez, F., Rubio, L., & Daròs, J.-A. (2010). Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. Journal of Biotechnology, 150(2), 268-275. doi:10.1016/j.jbiotec.2010.08.006

Wei, T., Zhang, C., Hong, J., Xiong, R., Kasschau, K. D., Zhou, X., … Wang, A. (2010). Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein P3N-PIPO. PLoS Pathogens, 6(6), e1000962. doi:10.1371/journal.ppat.1000962

Bragard, C., Caciagli, P., Lemaire, O., Lopez-Moya, J. J., MacFarlane, S., Peters, D., … Torrance, L. (2013). Status and Prospects of Plant Virus Control Through Interference with Vector Transmission. Annual Review of Phytopathology, 51(1), 177-201. doi:10.1146/annurev-phyto-082712-102346

Sacristan, S., Diaz, M., Fraile, A., & Garcia-Arenal, F. (2011). Contact Transmission of Tobacco Mosaic Virus: a Quantitative Analysis of Parameters Relevant for Virus Evolution. Journal of Virology, 85(10), 4974-4981. doi:10.1128/jvi.00057-11

Sanchez-Navarro, J. A., Zwart, M. P., & Elena, S. F. (2013). Effects of the Number of Genome Segments on Primary and Systemic Infections with a Multipartite Plant RNA Virus. Journal of Virology, 87(19), 10805-10815. doi:10.1128/jvi.01402-13

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem