- -

Generalised complex geometry in thermodynamical fluctuation theory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generalised complex geometry in thermodynamical fluctuation theory

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernández de Córdoba Castellá, Pedro José es_ES
dc.contributor.author Isidro San Juan, José María es_ES
dc.date.accessioned 2016-09-20T07:05:48Z
dc.date.available 2016-09-20T07:05:48Z
dc.date.issued 2015-08
dc.identifier.issn 1099-4300
dc.identifier.uri http://hdl.handle.net/10251/70125
dc.description.abstract We present a brief overview of some key concepts in the theory of generalized complex manifolds. This new geometry interpolates, so to speak, between symplectic geometry and complex geometry. As such it provides an ideal framework to analyze thermodynamical fluctuation theory in the presence of gravitational fields. To illustrate the usefulness of generalized complex geometry, we examine a simplified version of the Unruh effect: the thermalising effect of gravitational fields on the Schroedinger wavefunction. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Entropy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject QUANTIZATION es_ES
dc.subject MECHANICS es_ES
dc.subject GRAVITATION es_ES
dc.subject MANIFOLDS es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Generalised complex geometry in thermodynamical fluctuation theory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/e17085888
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Fernández De Córdoba Castellá, PJ.; Isidro San Juan, JM. (2015). Generalised complex geometry in thermodynamical fluctuation theory. Entropy. 17(8):5888-5902. doi:10.3390/e17085888 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/e17085888 es_ES
dc.description.upvformatpinicio 5888 es_ES
dc.description.upvformatpfin 5902 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 292734 es_ES
dc.description.references Velazquez Abad, L. (2012). Principles of classical statistical mechanics: A perspective from the notion of complementarity. Annals of Physics, 327(6), 1682-1693. doi:10.1016/j.aop.2012.03.002 es_ES
dc.description.references Bravetti, A., & Lopez-Monsalvo, C. S. (2015). Para-Sasakian geometry in thermodynamic fluctuation theory. Journal of Physics A: Mathematical and Theoretical, 48(12), 125206. doi:10.1088/1751-8113/48/12/125206 es_ES
dc.description.references Bravetti, A., Lopez-Monsalvo, C. S., & Nettel, F. (2015). Contact symmetries and Hamiltonian thermodynamics. Annals of Physics, 361, 377-400. doi:10.1016/j.aop.2015.07.010 es_ES
dc.description.references Quevedo, H., Vázquez, A., Macias, A., Lämmerzahl, C., & Camacho, A. (2008). The geometry of thermodynamics. AIP Conference Proceedings. doi:10.1063/1.2902782 es_ES
dc.description.references Rajeev, S. G. (2008). Quantization of contact manifolds and thermodynamics. Annals of Physics, 323(3), 768-782. doi:10.1016/j.aop.2007.05.001 es_ES
dc.description.references Rajeev, S. G. (2008). A Hamilton–Jacobi formalism for thermodynamics. Annals of Physics, 323(9), 2265-2285. doi:10.1016/j.aop.2007.12.007 es_ES
dc.description.references Ruppeiner, G. (1995). Riemannian geometry in thermodynamic fluctuation theory. Reviews of Modern Physics, 67(3), 605-659. doi:10.1103/revmodphys.67.605 es_ES
dc.description.references Velazquez, L. (2013). Curvature of fluctuation geometry and its implications on Riemannian fluctuation theory. Journal of Physics A: Mathematical and Theoretical, 46(34), 345003. doi:10.1088/1751-8113/46/34/345003 es_ES
dc.description.references Bardeen, J. M., Carter, B., & Hawking, S. W. (1973). The four laws of black hole mechanics. Communications in Mathematical Physics, 31(2), 161-170. doi:10.1007/bf01645742 es_ES
dc.description.references Padmanabhan, T. (2010). Thermodynamical aspects of gravity: new insights. Reports on Progress in Physics, 73(4), 046901. doi:10.1088/0034-4885/73/4/046901 es_ES
dc.description.references Padmanabhan, T. (2014). General relativity from a thermodynamic perspective. General Relativity and Gravitation, 46(3). doi:10.1007/s10714-014-1673-7 es_ES
dc.description.references Gualtieri, M. (2011). Generalized complex geometry. Annals of Mathematics, 174(1), 75-123. doi:10.4007/annals.2011.174.1.3 es_ES
dc.description.references Hitchin, N. (2003). Generalized Calabi-Yau Manifolds. The Quarterly Journal of Mathematics, 54(3), 281-308. doi:10.1093/qmath/hag025 es_ES
dc.description.references Calmet, X. (2015). Quantum mechanics, gravity and modified quantization relations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2047), 20140244. doi:10.1098/rsta.2014.0244 es_ES
dc.description.references Elze, H.-T. (2015). Are nonlinear discrete cellular automata compatible with quantum mechanics? Journal of Physics: Conference Series, 631, 012069. doi:10.1088/1742-6596/631/1/012069 es_ES
dc.description.references Matone, M. (2002). Foundations of Physics Letters, 15(4), 311-328. doi:10.1023/a:1021243926749 es_ES
dc.description.references Smolin, L. (1986). On the nature of quantum fluctuations and their relation to gravitation and the principle of inertia. Classical and Quantum Gravity, 3(3), 347-359. doi:10.1088/0264-9381/3/3/009 es_ES
dc.description.references Smolin, L. (1986). Quantum gravity and the statistical interpretation of quantum mechanics. International Journal of Theoretical Physics, 25(3), 215-238. doi:10.1007/bf00668705 es_ES
dc.description.references Florentino, C., Matias, P., Mourão, J., & Nunes, J. P. (2005). Geometric quantization, complex structures and the coherent state transform. Journal of Functional Analysis, 221(2), 303-322. doi:10.1016/j.jfa.2004.10.021 es_ES
dc.description.references Unruh, W. G. (1976). Notes on black-hole evaporation. Physical Review D, 14(4), 870-892. doi:10.1103/physrevd.14.870 es_ES
dc.description.references Davies, P. C. W. (1975). Scalar production in Schwarzschild and Rindler metrics. Journal of Physics A: Mathematical and General, 8(4), 609-616. doi:10.1088/0305-4470/8/4/022 es_ES
dc.description.references Fulling, S. A. (1973). Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time. Physical Review D, 7(10), 2850-2862. doi:10.1103/physrevd.7.2850 es_ES
dc.description.references Elze, H.-T. (2012). Linear dynamics of quantum-classical hybrids. Physical Review A, 85(5). doi:10.1103/physreva.85.052109 es_ES
dc.description.references Elze, H.-T. (2014). Action principle for cellular automata and the linearity of quantum mechanics. Physical Review A, 89(1). doi:10.1103/physreva.89.012111 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem