Velazquez Abad, L. (2012). Principles of classical statistical mechanics: A perspective from the notion of complementarity. Annals of Physics, 327(6), 1682-1693. doi:10.1016/j.aop.2012.03.002
Bravetti, A., & Lopez-Monsalvo, C. S. (2015). Para-Sasakian geometry in thermodynamic fluctuation theory. Journal of Physics A: Mathematical and Theoretical, 48(12), 125206. doi:10.1088/1751-8113/48/12/125206
Bravetti, A., Lopez-Monsalvo, C. S., & Nettel, F. (2015). Contact symmetries and Hamiltonian thermodynamics. Annals of Physics, 361, 377-400. doi:10.1016/j.aop.2015.07.010
[+]
Velazquez Abad, L. (2012). Principles of classical statistical mechanics: A perspective from the notion of complementarity. Annals of Physics, 327(6), 1682-1693. doi:10.1016/j.aop.2012.03.002
Bravetti, A., & Lopez-Monsalvo, C. S. (2015). Para-Sasakian geometry in thermodynamic fluctuation theory. Journal of Physics A: Mathematical and Theoretical, 48(12), 125206. doi:10.1088/1751-8113/48/12/125206
Bravetti, A., Lopez-Monsalvo, C. S., & Nettel, F. (2015). Contact symmetries and Hamiltonian thermodynamics. Annals of Physics, 361, 377-400. doi:10.1016/j.aop.2015.07.010
Quevedo, H., Vázquez, A., Macias, A., Lämmerzahl, C., & Camacho, A. (2008). The geometry of thermodynamics. AIP Conference Proceedings. doi:10.1063/1.2902782
Rajeev, S. G. (2008). Quantization of contact manifolds and thermodynamics. Annals of Physics, 323(3), 768-782. doi:10.1016/j.aop.2007.05.001
Rajeev, S. G. (2008). A Hamilton–Jacobi formalism for thermodynamics. Annals of Physics, 323(9), 2265-2285. doi:10.1016/j.aop.2007.12.007
Ruppeiner, G. (1995). Riemannian geometry in thermodynamic fluctuation theory. Reviews of Modern Physics, 67(3), 605-659. doi:10.1103/revmodphys.67.605
Velazquez, L. (2013). Curvature of fluctuation geometry and its implications on Riemannian fluctuation theory. Journal of Physics A: Mathematical and Theoretical, 46(34), 345003. doi:10.1088/1751-8113/46/34/345003
Bardeen, J. M., Carter, B., & Hawking, S. W. (1973). The four laws of black hole mechanics. Communications in Mathematical Physics, 31(2), 161-170. doi:10.1007/bf01645742
Padmanabhan, T. (2010). Thermodynamical aspects of gravity: new insights. Reports on Progress in Physics, 73(4), 046901. doi:10.1088/0034-4885/73/4/046901
Padmanabhan, T. (2014). General relativity from a thermodynamic perspective. General Relativity and Gravitation, 46(3). doi:10.1007/s10714-014-1673-7
Gualtieri, M. (2011). Generalized complex geometry. Annals of Mathematics, 174(1), 75-123. doi:10.4007/annals.2011.174.1.3
Hitchin, N. (2003). Generalized Calabi-Yau Manifolds. The Quarterly Journal of Mathematics, 54(3), 281-308. doi:10.1093/qmath/hag025
Calmet, X. (2015). Quantum mechanics, gravity and modified quantization relations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2047), 20140244. doi:10.1098/rsta.2014.0244
Elze, H.-T. (2015). Are nonlinear discrete cellular automata compatible with quantum mechanics? Journal of Physics: Conference Series, 631, 012069. doi:10.1088/1742-6596/631/1/012069
Matone, M. (2002). Foundations of Physics Letters, 15(4), 311-328. doi:10.1023/a:1021243926749
Smolin, L. (1986). On the nature of quantum fluctuations and their relation to gravitation and the principle of inertia. Classical and Quantum Gravity, 3(3), 347-359. doi:10.1088/0264-9381/3/3/009
Smolin, L. (1986). Quantum gravity and the statistical interpretation of quantum mechanics. International Journal of Theoretical Physics, 25(3), 215-238. doi:10.1007/bf00668705
Florentino, C., Matias, P., Mourão, J., & Nunes, J. P. (2005). Geometric quantization, complex structures and the coherent state transform. Journal of Functional Analysis, 221(2), 303-322. doi:10.1016/j.jfa.2004.10.021
Unruh, W. G. (1976). Notes on black-hole evaporation. Physical Review D, 14(4), 870-892. doi:10.1103/physrevd.14.870
Davies, P. C. W. (1975). Scalar production in Schwarzschild and Rindler metrics. Journal of Physics A: Mathematical and General, 8(4), 609-616. doi:10.1088/0305-4470/8/4/022
Fulling, S. A. (1973). Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time. Physical Review D, 7(10), 2850-2862. doi:10.1103/physrevd.7.2850
Elze, H.-T. (2012). Linear dynamics of quantum-classical hybrids. Physical Review A, 85(5). doi:10.1103/physreva.85.052109
Elze, H.-T. (2014). Action principle for cellular automata and the linearity of quantum mechanics. Physical Review A, 89(1). doi:10.1103/physreva.89.012111
[-]