- -

CFA-1: The first chiral metal-organic framework containing Kuratowski-type secondary building units

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CFA-1: The first chiral metal-organic framework containing Kuratowski-type secondary building units

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Schmieder, Phillip es_ES
dc.contributor.author Denysenko, Dmytro es_ES
dc.contributor.author Grzywa, Maciej es_ES
dc.contributor.author Baumgaertner, Benjamin es_ES
dc.contributor.author Senkovska, Irena es_ES
dc.contributor.author Kaskel, Stefan es_ES
dc.contributor.author Sastre Navarro, German Ignacio es_ES
dc.contributor.author van Wuellen, Leo es_ES
dc.contributor.author Volkmer, Dirk es_ES
dc.date.accessioned 2016-09-20T11:27:25Z
dc.date.available 2016-09-20T11:27:25Z
dc.date.issued 2013
dc.identifier.issn 1477-9226
dc.identifier.uri http://hdl.handle.net/10251/70155
dc.description.abstract [EN] The novel homochiral metal-organic framework CFA-1 (Coordination Framework Augsburg-1), [Zn-5(OAc) 4(bibta)(3)], containing the achiral linker {H-2-bibta = 1H, 1' H-5,5'-bibenzo[d][1,2,3] triazole}, has been synthesised. The reaction of H-2-bibta and Zn(OAc)(2)center dot 2H(2)O in N-methylformamide (NMF) (90 degrees C, 3 d) yields CFA-1 as trigonal prismatic single crystals. CFA-1 serves as a convenient precursor for the synthesis of isostructural frameworks with redox-active metal centres, which is demonstrated by the postsynthetic exchange of Zn2+ by Co2+ ions. The framework is robust to solvent removal and has been structurally characterized by synchrotron single-crystal X-ray diffraction and solid state NMR measurements (C-13 MAS-and H-1 MAS-NMR at 10 kHz). Results from MAS-NMR and IR spectroscopy studies are corroborated by cluster and periodic DFT calculations performed on CFA-1 cluster fragments. es_ES
dc.description.sponsorship Financial support by the DFG (Priority Program SPP 1362 "Porous Metal-organic Frameworks") is gratefully acknowledged. G. Sastre thanks the Spanish government for the provision of the programme "Severo Ochoa" (project SEV 2012 0267), and SGAI-CSIC for computing time. The authors are grateful to Dr U. Mueller for support during single crystals measurements and the Helmholtz Centre, Berlin for financing the travel costs to BESSY II. The authors are grateful to J. Jelic (Dept. of Chemistry, TU Munich) for performing DFT calculations on CFA-1 structure models employing periodic boundary conditions.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Dalton Transactions es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title CFA-1: The first chiral metal-organic framework containing Kuratowski-type secondary building units es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C3DT50787D
dc.relation.projectID info:eu-repo/grantAgreement/DFG//SPP 1362/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Schmieder, P.; Denysenko, D.; Grzywa, M.; Baumgaertner, B.; Senkovska, I.; Kaskel, S.; Sastre Navarro, GI.... (2013). CFA-1: The first chiral metal-organic framework containing Kuratowski-type secondary building units. Dalton Transactions. 42(30):10786-10797. https://doi.org/10.1039/C3DT50787D es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3dt50787d es_ES
dc.description.upvformatpinicio 10786 es_ES
dc.description.upvformatpfin 10797 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 30 es_ES
dc.relation.senia 261097 es_ES
dc.identifier.pmid 23775495
dc.contributor.funder Deutsche Forschungsgemeinschaft
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Yaghi, O. M., Li, H., Davis, C., Richardson, D., & Groy, T. L. (1998). Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids†. Accounts of Chemical Research, 31(8), 474-484. doi:10.1021/ar970151f es_ES
dc.description.references Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M., & Yaghi, O. M. (2001). Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Accounts of Chemical Research, 34(4), 319-330. doi:10.1021/ar000034b es_ES
dc.description.references Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610 es_ES
dc.description.references James, S. L. (2003). Metal-organic frameworks. Chemical Society Reviews, 32(5), 276. doi:10.1039/b200393g es_ES
dc.description.references Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b es_ES
dc.description.references Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284. doi:10.1039/b804680h es_ES
dc.description.references Ma, L., Abney, C., & Lin, W. (2009). Enantioselective catalysis with homochiral metal–organic frameworks. Chemical Society Reviews, 38(5), 1248. doi:10.1039/b807083k es_ES
dc.description.references Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische Gerüste für die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063 es_ES
dc.description.references Kuppler, R. J., Timmons, D. J., Fang, Q.-R., Li, J.-R., Makal, T. A., Young, M. D., … Zhou, H.-C. (2009). Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 253(23-24), 3042-3066. doi:10.1016/j.ccr.2009.05.019 es_ES
dc.description.references Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J., & Kim, K. (2000). A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature, 404(6781), 982-986. doi:10.1038/35010088 es_ES
dc.description.references Evans, O. R., Ngo, H. L., & Lin, W. (2001). Chiral Porous Solids Based on Lamellar Lanthanide Phosphonates. Journal of the American Chemical Society, 123(42), 10395-10396. doi:10.1021/ja0163772 es_ES
dc.description.references Lin, W. (2005). Homochiral porous metal-organic frameworks: Why and how? Journal of Solid State Chemistry, 178(8), 2486-2490. doi:10.1016/j.jssc.2005.06.013 es_ES
dc.description.references Wu, C.-D., Hu, A., Zhang, L., & Lin, W. (2005). A Homochiral Porous Metal−Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 127(25), 8940-8941. doi:10.1021/ja052431t es_ES
dc.description.references Ma, L., & Lin, W. (2008). Chirality-Controlled and Solvent-Templated Catenation Isomerism in Metal−Organic Frameworks. Journal of the American Chemical Society, 130(42), 13834-13835. doi:10.1021/ja804944r es_ES
dc.description.references Kepert, C. J., Prior, T. J., & Rosseinsky, M. J. (2000). A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks:  The First Example of Ligand Control of Network Chirality. Journal of the American Chemical Society, 122(21), 5158-5168. doi:10.1021/ja993814s es_ES
dc.description.references Bradshaw, D., Prior, T. J., Cussen, E. J., Claridge, J. B., & Rosseinsky, M. J. (2004). Permanent Microporosity and Enantioselective Sorption in a Chiral Open Framework. Journal of the American Chemical Society, 126(19), 6106-6114. doi:10.1021/ja0316420 es_ES
dc.description.references Ezuhara, T., Endo, K., & Aoyama, Y. (1999). Helical Coordination Polymers from Achiral Components in Crystals. Homochiral Crystallization, Homochiral Helix Winding in the Solid State, and Chirality Control by Seeding. Journal of the American Chemical Society, 121(14), 3279-3283. doi:10.1021/ja9819918 es_ES
dc.description.references Biswas, S., Tonigold, M., & Volkmer, D. (2008). Homo- and Heteropentanuclear Coordination Compounds withTdSymmetry - the Solid State Structures of [MZn4(L)4(L′)6] (M = CoIIor Zn; L = chloride or acac; L′ = 1,2,3-benzotriazolate). Zeitschrift für anorganische und allgemeine Chemie, 634(14), 2532-2538. doi:10.1002/zaac.200800296 es_ES
dc.description.references Biswas, S., Tonigold, M., Speldrich, M., Kögerler, P., Weil, M., & Volkmer, D. (2010). Syntheses and Magnetostructural Investigations on Kuratowski-Type Homo- and Heteropentanuclear Coordination Compounds [MZn4Cl4(L)6] (MII= Zn, Fe, Co, Ni, or Cu; L = 5,6-Dimethyl-1,2,3-benzotriazolate) Represented by the NonplanarK3,3Graph. Inorganic Chemistry, 49(16), 7424-7434. doi:10.1021/ic100749k es_ES
dc.description.references Liu, Y.-Y., Grzywa, M., Tonigold, M., Sastre, G., Schüttrigkeit, T., Leeson, N. S., & Volkmer, D. (2011). Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII = Zn or Ru) featuring long-lived excited electronic states. Dalton Transactions, 40(22), 5926. doi:10.1039/c0dt01750g es_ES
dc.description.references Denysenko, D., Grzywa, M., Tonigold, M., Streppel, B., Krkljus, I., Hirscher, M., … Volkmer, D. (2011). Elucidating Gating Effects for Hydrogen Sorption in MFU-4-Type Triazolate-Based Metal-Organic Frameworks Featuring Different Pore Sizes. Chemistry - A European Journal, 17(6), 1837-1848. doi:10.1002/chem.201001872 es_ES
dc.description.references Marshall, J. H. (1978). Preparation and characterization of tetrakis(2,4-pentanedionato)hexakis(benzotriazolato)pentacopper(II). Inorganic Chemistry, 17(12), 3711-3713. doi:10.1021/ic50190a081 es_ES
dc.description.references Himes, V. L., Mighell, A. D., & Siedle, A. R. (1981). Synthesis and structure of Cu5(BTA)6(t-C4H9NC)4, a mixed-valent copper-nitrogen cluster containing eta3-benzotriazolate. Journal of the American Chemical Society, 103(1), 211-212. doi:10.1021/ja00391a049 es_ES
dc.description.references Kokoszka, G. F., Baranowski, J., Goldstein, C., Orsini, J., Mighell, A. D., Himes, V. L., & Siedle, A. R. (1983). Two-dimensional dynamical Jahn-Teller effects in a mixed-valence benzotriazolato copper cluster, Cu5(BTA)6(RNC)4. Journal of the American Chemical Society, 105(17), 5627-5633. doi:10.1021/ja00355a017 es_ES
dc.description.references Handley, J., Collison, D., Garner, C. D., Helliwell, M., Docherty, R., Lawson, J. R., & Tasker, P. A. (1993). Hexakis(benzotriazolato)tetrakis(2,4-pentanedionato)pentacopper(II): A Model for Corrosion Inhibition. Angewandte Chemie International Edition in English, 32(7), 1036-1038. doi:10.1002/anie.199310361 es_ES
dc.description.references Bakalbassis, E. G., Diamantopoulou, E., Perlepes, S. P., Raptopoulou, C. P., Tangoulis, V., Terzis, A., & Zafiropoulos, T. F. (1995). Benzotriazolate-mediated assembly of the discrete asymmetric pentanuclear nickel complex [Ni5(OH)(bta)5(acac)4(H2O)4](Hbta = benzotriazole, Hacac = pentane-2,4-dione). Journal of the Chemical Society, Chemical Communications, (13), 1347. doi:10.1039/c39950001347 es_ES
dc.description.references Tangoulis, V., Raptopoulou, C. P., Terzis, A., Bakalbassis, E. G., Diamantopoulou, E., & Perlepes, S. P. (1998). Polynuclear Nickel(II) Complexes:  Preparation, Characterization, Magnetic Properties, and Quantum-Chemical Study of [Ni5(OH)(Rbta)5(acac)4(H2O)4] (RbtaH = Benzotriazole and 5,6-Dimethylbenzotriazole). Inorganic Chemistry, 37(13), 3142-3153. doi:10.1021/ic9714091 es_ES
dc.description.references Murrie, M., Collison, D., Garner, C. D., Helliwell, M., Tasker, P. A., & Turner, S. S. (1998). Synthesis structure magnetic properties of [Cu5(bta)6L4] (bta=benzotriazolate;L=β-diketonate) Clusters. Polyhedron, 17(17), 3031-3043. doi:10.1016/s0277-5387(98)00161-2 es_ES
dc.description.references Tangoulis, V., Diamantopoulou, E., Bakalbassisc, E. G., Raptopouloua, C. P., Terzisa, A., & Perlepes, S. P. (1999). The Case of Symmetry-Dependent Ground-State Spin Value in Ni(II) Clusters of High-Nuclearity. Crystal Structure and Magnetic Properties of a Pentanuclear and a Nonanuclear Ni(II) Clusters. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 335(1), 463-472. doi:10.1080/10587259908028888 es_ES
dc.description.references WANG, J. (2002). Synthesis and structure of Cu5(BTA)6(TTA)4?5DMF, a cop-per-nitrogen cluster containing ?3-benzotriazolate. Chinese Science Bulletin, 47(11), 890. doi:10.1360/02tb9199 es_ES
dc.description.references Yuan, Y.-X., Wei, P.-J., Qin, W., Zhang, Y., Yao, J.-L., & Gu, R.-A. (2007). Combined Studies on the Surface Coordination Chemistry of Benzotriazole at the Copper Electrode by Direct Electrochemical Synthesis and Surface-Enhanced Raman Spectroscopy. European Journal of Inorganic Chemistry, 2007(31), 4980-4987. doi:10.1002/ejic.200700436 es_ES
dc.description.references Biswas, S., Grzywa, M., Nayek, H. P., Dehnen, S., Senkovska, I., Kaskel, S., & Volkmer, D. (2009). A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties. Dalton Transactions, (33), 6487. doi:10.1039/b904280f es_ES
dc.description.references Kaminsky, W. (2005). WinXMorph: a computer program to draw crystal morphology, growth sectors and cross sections with export files in VRML V2.0 utf8-virtual reality format. Journal of Applied Crystallography, 38(3), 566-567. doi:10.1107/s0021889805012148 es_ES
dc.description.references Kaminsky, W. (2007). From CIF to virtual morphology using theWinXMorphprogram. Journal of Applied Crystallography, 40(2), 382-385. doi:10.1107/s0021889807003986 es_ES
dc.description.references Spek, A. L. (2003). Single-crystal structure validation with the programPLATON. Journal of Applied Crystallography, 36(1), 7-13. doi:10.1107/s0021889802022112 es_ES
dc.description.references Momma, K., & Izumi, F. (2011). VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/s0021889811038970 es_ES
dc.description.references Tarini, M., Cignoni, P., & Montani, C. (2006). Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization. IEEE Transactions on Visualization and Computer Graphics, 12(5), 1237-1244. doi:10.1109/tvcg.2006.115 es_ES
dc.description.references Denysenko, D., Werner, T., Grzywa, M., Puls, A., Hagen, V., Eickerling, G., … Volkmer, D. (2012). Reversible gas-phase redox processes catalyzed by Co-exchanged MFU-4l(arge). Chem. Commun., 48(9), 1236-1238. doi:10.1039/c2cc16235k es_ES
dc.description.references Bertini, I., Ciampolini, M., & Sacconi, L. (1971). POLARIZED SPECTRA OF THE TRIGONAL BIPYRAMIDAL CoNP3Br CHROMOPHORE. Journal of Coordination Chemistry, 1(1), 73-74. doi:10.1080/00958977108070746 es_ES
dc.description.references Bertini, I., Gatteschi, D., & Scozzafava, A. (1975). Ligand field interpretation of high-spin trigonal-bipyramidal cobalt(II) complexes. Inorganic Chemistry, 14(4), 812-815. doi:10.1021/ic50146a024 es_ES
dc.description.references Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., … Hoatson, G. (2001). Modelling one- and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry, 40(1), 70-76. doi:10.1002/mrc.984 es_ES
dc.description.references Boese, A. D., & Handy, N. C. (2001). A new parametrization of exchange–correlation generalized gradient approximation functionals. The Journal of Chemical Physics, 114(13), 5497-5503. doi:10.1063/1.1347371 es_ES
dc.description.references Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541a es_ES
dc.description.references Schäfer, A., Huber, C., & Ahlrichs, R. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics, 100(8), 5829-5835. doi:10.1063/1.467146 es_ES
dc.description.references Eichkorn, K., Weigend, F., Treutler, O., & Ahlrichs, R. (1997). Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 97(1-4), 119-124. doi:10.1007/s002140050244 es_ES
dc.description.references Weigend, F., Furche, F., & Ahlrichs, R. (2003). Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr. The Journal of Chemical Physics, 119(24), 12753-12762. doi:10.1063/1.1627293 es_ES
dc.description.references Andrae, D., H�u�ermann, U., Dolg, M., Stoll, H., & Preu�, H. (1990). Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theoretica Chimica Acta, 77(2), 123-141. doi:10.1007/bf01114537 es_ES
dc.description.references Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., … Scheffler, M. (2009). Ab initio molecular simulations with numeric atom-centered orbitals. Computer Physics Communications, 180(11), 2175-2196. doi:10.1016/j.cpc.2009.06.022 es_ES
dc.description.references Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 es_ES
dc.description.references Tkatchenko, A., & Scheffler, M. (2009). Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Physical Review Letters, 102(7). doi:10.1103/physrevlett.102.073005 es_ES
dc.description.references Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift für Kristallographie - Crystalline Materials, 220(5/6). doi:10.1524/zkri.220.5.567.65075 es_ES
dc.description.references Yates, J. R., Pickard, C. J., & Mauri, F. (2007). Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Physical Review B, 76(2). doi:10.1103/physrevb.76.024401 es_ES
dc.description.references Barone, V., Crescenzi, O., & Improta, R. (2002). Computation of Spectroscopic Parameters in vacuo and in Condensed Phases by Methods based on the Density Functional Theory. Quantitative Structure-Activity Relationships, 21(2), 105-118. doi:10.1002/1521-3838(200207)21:2<105::aid-qsar105>3.0.co;2-v es_ES
dc.description.references Ravikovitch, P. I., & Neimark, A. V. (2001). Characterization of nanoporous materials from adsorption and desorption isotherms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187-188, 11-21. doi:10.1016/s0927-7757(01)00614-8 es_ES
dc.description.references Jagiello, J., & Thommes, M. (2004). Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon, 42(7), 1227-1232. doi:10.1016/j.carbon.2004.01.022 es_ES
dc.description.references Bennett, A. E., Rienstra, C. M., Auger, M., Lakshmi, K. V., & Griffin, R. G. (1995). Heteronuclear decoupling in rotating solids. The Journal of Chemical Physics, 103(16), 6951-6958. doi:10.1063/1.470372 es_ES
dc.description.references Kabsch, W. (1988). Automatic indexing of rotation diffraction patterns. Journal of Applied Crystallography, 21(1), 67-72. doi:10.1107/s0021889887009737 es_ES
dc.description.references Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem