- -

CFA-1: The first chiral metal-organic framework containing Kuratowski-type secondary building units

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CFA-1: The first chiral metal-organic framework containing Kuratowski-type secondary building units

Mostrar el registro completo del ítem

Schmieder, P.; Denysenko, D.; Grzywa, M.; Baumgaertner, B.; Senkovska, I.; Kaskel, S.; Sastre Navarro, GI.... (2013). CFA-1: The first chiral metal-organic framework containing Kuratowski-type secondary building units. Dalton Transactions. 42(30):10786-10797. https://doi.org/10.1039/C3DT50787D

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/70155

Ficheros en el ítem

Metadatos del ítem

Título: CFA-1: The first chiral metal-organic framework containing Kuratowski-type secondary building units
Autor: Schmieder, Phillip Denysenko, Dmytro Grzywa, Maciej Baumgaertner, Benjamin Senkovska, Irena Kaskel, Stefan Sastre Navarro, German Ignacio van Wuellen, Leo Volkmer, Dirk
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] The novel homochiral metal-organic framework CFA-1 (Coordination Framework Augsburg-1), [Zn-5(OAc) 4(bibta)(3)], containing the achiral linker {H-2-bibta = 1H, 1' H-5,5'-bibenzo[d][1,2,3] triazole}, has been synthesised. ...[+]
Derechos de uso: Cerrado
Fuente:
Dalton Transactions. (issn: 1477-9226 )
DOI: 10.1039/C3DT50787D
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c3dt50787d
Código del Proyecto:
info:eu-repo/grantAgreement/DFG//SPP 1362/
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
Agradecimientos:
Financial support by the DFG (Priority Program SPP 1362 "Porous Metal-organic Frameworks") is gratefully acknowledged. G. Sastre thanks the Spanish government for the provision of the programme "Severo Ochoa" (project SEV ...[+]
Tipo: Artículo

References

Yaghi, O. M., Li, H., Davis, C., Richardson, D., & Groy, T. L. (1998). Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids†. Accounts of Chemical Research, 31(8), 474-484. doi:10.1021/ar970151f

Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M., & Yaghi, O. M. (2001). Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Accounts of Chemical Research, 34(4), 319-330. doi:10.1021/ar000034b

Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610 [+]
Yaghi, O. M., Li, H., Davis, C., Richardson, D., & Groy, T. L. (1998). Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids†. Accounts of Chemical Research, 31(8), 474-484. doi:10.1021/ar970151f

Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M., & Yaghi, O. M. (2001). Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Accounts of Chemical Research, 34(4), 319-330. doi:10.1021/ar000034b

Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610

James, S. L. (2003). Metal-organic frameworks. Chemical Society Reviews, 32(5), 276. doi:10.1039/b200393g

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284. doi:10.1039/b804680h

Ma, L., Abney, C., & Lin, W. (2009). Enantioselective catalysis with homochiral metal–organic frameworks. Chemical Society Reviews, 38(5), 1248. doi:10.1039/b807083k

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische Gerüste für die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063

Kuppler, R. J., Timmons, D. J., Fang, Q.-R., Li, J.-R., Makal, T. A., Young, M. D., … Zhou, H.-C. (2009). Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 253(23-24), 3042-3066. doi:10.1016/j.ccr.2009.05.019

Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J., & Kim, K. (2000). A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature, 404(6781), 982-986. doi:10.1038/35010088

Evans, O. R., Ngo, H. L., & Lin, W. (2001). Chiral Porous Solids Based on Lamellar Lanthanide Phosphonates. Journal of the American Chemical Society, 123(42), 10395-10396. doi:10.1021/ja0163772

Lin, W. (2005). Homochiral porous metal-organic frameworks: Why and how? Journal of Solid State Chemistry, 178(8), 2486-2490. doi:10.1016/j.jssc.2005.06.013

Wu, C.-D., Hu, A., Zhang, L., & Lin, W. (2005). A Homochiral Porous Metal−Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 127(25), 8940-8941. doi:10.1021/ja052431t

Ma, L., & Lin, W. (2008). Chirality-Controlled and Solvent-Templated Catenation Isomerism in Metal−Organic Frameworks. Journal of the American Chemical Society, 130(42), 13834-13835. doi:10.1021/ja804944r

Kepert, C. J., Prior, T. J., & Rosseinsky, M. J. (2000). A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks:  The First Example of Ligand Control of Network Chirality. Journal of the American Chemical Society, 122(21), 5158-5168. doi:10.1021/ja993814s

Bradshaw, D., Prior, T. J., Cussen, E. J., Claridge, J. B., & Rosseinsky, M. J. (2004). Permanent Microporosity and Enantioselective Sorption in a Chiral Open Framework. Journal of the American Chemical Society, 126(19), 6106-6114. doi:10.1021/ja0316420

Ezuhara, T., Endo, K., & Aoyama, Y. (1999). Helical Coordination Polymers from Achiral Components in Crystals. Homochiral Crystallization, Homochiral Helix Winding in the Solid State, and Chirality Control by Seeding. Journal of the American Chemical Society, 121(14), 3279-3283. doi:10.1021/ja9819918

Biswas, S., Tonigold, M., & Volkmer, D. (2008). Homo- and Heteropentanuclear Coordination Compounds withTdSymmetry - the Solid State Structures of [MZn4(L)4(L′)6] (M = CoIIor Zn; L = chloride or acac; L′ = 1,2,3-benzotriazolate). Zeitschrift für anorganische und allgemeine Chemie, 634(14), 2532-2538. doi:10.1002/zaac.200800296

Biswas, S., Tonigold, M., Speldrich, M., Kögerler, P., Weil, M., & Volkmer, D. (2010). Syntheses and Magnetostructural Investigations on Kuratowski-Type Homo- and Heteropentanuclear Coordination Compounds [MZn4Cl4(L)6] (MII= Zn, Fe, Co, Ni, or Cu; L = 5,6-Dimethyl-1,2,3-benzotriazolate) Represented by the NonplanarK3,3Graph. Inorganic Chemistry, 49(16), 7424-7434. doi:10.1021/ic100749k

Liu, Y.-Y., Grzywa, M., Tonigold, M., Sastre, G., Schüttrigkeit, T., Leeson, N. S., & Volkmer, D. (2011). Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII = Zn or Ru) featuring long-lived excited electronic states. Dalton Transactions, 40(22), 5926. doi:10.1039/c0dt01750g

Denysenko, D., Grzywa, M., Tonigold, M., Streppel, B., Krkljus, I., Hirscher, M., … Volkmer, D. (2011). Elucidating Gating Effects for Hydrogen Sorption in MFU-4-Type Triazolate-Based Metal-Organic Frameworks Featuring Different Pore Sizes. Chemistry - A European Journal, 17(6), 1837-1848. doi:10.1002/chem.201001872

Marshall, J. H. (1978). Preparation and characterization of tetrakis(2,4-pentanedionato)hexakis(benzotriazolato)pentacopper(II). Inorganic Chemistry, 17(12), 3711-3713. doi:10.1021/ic50190a081

Himes, V. L., Mighell, A. D., & Siedle, A. R. (1981). Synthesis and structure of Cu5(BTA)6(t-C4H9NC)4, a mixed-valent copper-nitrogen cluster containing eta3-benzotriazolate. Journal of the American Chemical Society, 103(1), 211-212. doi:10.1021/ja00391a049

Kokoszka, G. F., Baranowski, J., Goldstein, C., Orsini, J., Mighell, A. D., Himes, V. L., & Siedle, A. R. (1983). Two-dimensional dynamical Jahn-Teller effects in a mixed-valence benzotriazolato copper cluster, Cu5(BTA)6(RNC)4. Journal of the American Chemical Society, 105(17), 5627-5633. doi:10.1021/ja00355a017

Handley, J., Collison, D., Garner, C. D., Helliwell, M., Docherty, R., Lawson, J. R., & Tasker, P. A. (1993). Hexakis(benzotriazolato)tetrakis(2,4-pentanedionato)pentacopper(II): A Model for Corrosion Inhibition. Angewandte Chemie International Edition in English, 32(7), 1036-1038. doi:10.1002/anie.199310361

Bakalbassis, E. G., Diamantopoulou, E., Perlepes, S. P., Raptopoulou, C. P., Tangoulis, V., Terzis, A., & Zafiropoulos, T. F. (1995). Benzotriazolate-mediated assembly of the discrete asymmetric pentanuclear nickel complex [Ni5(OH)(bta)5(acac)4(H2O)4](Hbta = benzotriazole, Hacac = pentane-2,4-dione). Journal of the Chemical Society, Chemical Communications, (13), 1347. doi:10.1039/c39950001347

Tangoulis, V., Raptopoulou, C. P., Terzis, A., Bakalbassis, E. G., Diamantopoulou, E., & Perlepes, S. P. (1998). Polynuclear Nickel(II) Complexes:  Preparation, Characterization, Magnetic Properties, and Quantum-Chemical Study of [Ni5(OH)(Rbta)5(acac)4(H2O)4] (RbtaH = Benzotriazole and 5,6-Dimethylbenzotriazole). Inorganic Chemistry, 37(13), 3142-3153. doi:10.1021/ic9714091

Murrie, M., Collison, D., Garner, C. D., Helliwell, M., Tasker, P. A., & Turner, S. S. (1998). Synthesis structure magnetic properties of [Cu5(bta)6L4] (bta=benzotriazolate;L=β-diketonate) Clusters. Polyhedron, 17(17), 3031-3043. doi:10.1016/s0277-5387(98)00161-2

Tangoulis, V., Diamantopoulou, E., Bakalbassisc, E. G., Raptopouloua, C. P., Terzisa, A., & Perlepes, S. P. (1999). The Case of Symmetry-Dependent Ground-State Spin Value in Ni(II) Clusters of High-Nuclearity. Crystal Structure and Magnetic Properties of a Pentanuclear and a Nonanuclear Ni(II) Clusters. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 335(1), 463-472. doi:10.1080/10587259908028888

WANG, J. (2002). Synthesis and structure of Cu5(BTA)6(TTA)4?5DMF, a cop-per-nitrogen cluster containing ?3-benzotriazolate. Chinese Science Bulletin, 47(11), 890. doi:10.1360/02tb9199

Yuan, Y.-X., Wei, P.-J., Qin, W., Zhang, Y., Yao, J.-L., & Gu, R.-A. (2007). Combined Studies on the Surface Coordination Chemistry of Benzotriazole at the Copper Electrode by Direct Electrochemical Synthesis and Surface-Enhanced Raman Spectroscopy. European Journal of Inorganic Chemistry, 2007(31), 4980-4987. doi:10.1002/ejic.200700436

Biswas, S., Grzywa, M., Nayek, H. P., Dehnen, S., Senkovska, I., Kaskel, S., & Volkmer, D. (2009). A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties. Dalton Transactions, (33), 6487. doi:10.1039/b904280f

Kaminsky, W. (2005). WinXMorph: a computer program to draw crystal morphology, growth sectors and cross sections with export files in VRML V2.0 utf8-virtual reality format. Journal of Applied Crystallography, 38(3), 566-567. doi:10.1107/s0021889805012148

Kaminsky, W. (2007). From CIF to virtual morphology using theWinXMorphprogram. Journal of Applied Crystallography, 40(2), 382-385. doi:10.1107/s0021889807003986

Spek, A. L. (2003). Single-crystal structure validation with the programPLATON. Journal of Applied Crystallography, 36(1), 7-13. doi:10.1107/s0021889802022112

Momma, K., & Izumi, F. (2011). VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/s0021889811038970

Tarini, M., Cignoni, P., & Montani, C. (2006). Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization. IEEE Transactions on Visualization and Computer Graphics, 12(5), 1237-1244. doi:10.1109/tvcg.2006.115

Denysenko, D., Werner, T., Grzywa, M., Puls, A., Hagen, V., Eickerling, G., … Volkmer, D. (2012). Reversible gas-phase redox processes catalyzed by Co-exchanged MFU-4l(arge). Chem. Commun., 48(9), 1236-1238. doi:10.1039/c2cc16235k

Bertini, I., Ciampolini, M., & Sacconi, L. (1971). POLARIZED SPECTRA OF THE TRIGONAL BIPYRAMIDAL CoNP3Br CHROMOPHORE. Journal of Coordination Chemistry, 1(1), 73-74. doi:10.1080/00958977108070746

Bertini, I., Gatteschi, D., & Scozzafava, A. (1975). Ligand field interpretation of high-spin trigonal-bipyramidal cobalt(II) complexes. Inorganic Chemistry, 14(4), 812-815. doi:10.1021/ic50146a024

Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., … Hoatson, G. (2001). Modelling one- and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry, 40(1), 70-76. doi:10.1002/mrc.984

Boese, A. D., & Handy, N. C. (2001). A new parametrization of exchange–correlation generalized gradient approximation functionals. The Journal of Chemical Physics, 114(13), 5497-5503. doi:10.1063/1.1347371

Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541a

Schäfer, A., Huber, C., & Ahlrichs, R. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics, 100(8), 5829-5835. doi:10.1063/1.467146

Eichkorn, K., Weigend, F., Treutler, O., & Ahlrichs, R. (1997). Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 97(1-4), 119-124. doi:10.1007/s002140050244

Weigend, F., Furche, F., & Ahlrichs, R. (2003). Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr. The Journal of Chemical Physics, 119(24), 12753-12762. doi:10.1063/1.1627293

Andrae, D., H�u�ermann, U., Dolg, M., Stoll, H., & Preu�, H. (1990). Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theoretica Chimica Acta, 77(2), 123-141. doi:10.1007/bf01114537

Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., … Scheffler, M. (2009). Ab initio molecular simulations with numeric atom-centered orbitals. Computer Physics Communications, 180(11), 2175-2196. doi:10.1016/j.cpc.2009.06.022

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865

Tkatchenko, A., & Scheffler, M. (2009). Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Physical Review Letters, 102(7). doi:10.1103/physrevlett.102.073005

Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift für Kristallographie - Crystalline Materials, 220(5/6). doi:10.1524/zkri.220.5.567.65075

Yates, J. R., Pickard, C. J., & Mauri, F. (2007). Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Physical Review B, 76(2). doi:10.1103/physrevb.76.024401

Barone, V., Crescenzi, O., & Improta, R. (2002). Computation of Spectroscopic Parameters in vacuo and in Condensed Phases by Methods based on the Density Functional Theory. Quantitative Structure-Activity Relationships, 21(2), 105-118. doi:10.1002/1521-3838(200207)21:2<105::aid-qsar105>3.0.co;2-v

Ravikovitch, P. I., & Neimark, A. V. (2001). Characterization of nanoporous materials from adsorption and desorption isotherms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187-188, 11-21. doi:10.1016/s0927-7757(01)00614-8

Jagiello, J., & Thommes, M. (2004). Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon, 42(7), 1227-1232. doi:10.1016/j.carbon.2004.01.022

Bennett, A. E., Rienstra, C. M., Auger, M., Lakshmi, K. V., & Griffin, R. G. (1995). Heteronuclear decoupling in rotating solids. The Journal of Chemical Physics, 103(16), 6951-6958. doi:10.1063/1.470372

Kabsch, W. (1988). Automatic indexing of rotation diffraction patterns. Journal of Applied Crystallography, 21(1), 67-72. doi:10.1107/s0021889887009737

Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem