- -

Carbon-11 Radiolabelling of Organosulfur Compounds: 11C Synthesis of the Progesterone Receptor Agonist Tanaproget

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Carbon-11 Radiolabelling of Organosulfur Compounds: 11C Synthesis of the Progesterone Receptor Agonist Tanaproget

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Haywood, Tom es_ES
dc.contributor.author Kealey, Steven es_ES
dc.contributor.author Sánchez-Cabezas, Santiago es_ES
dc.contributor.author Hall, James J. es_ES
dc.contributor.author Allott, Louis es_ES
dc.contributor.author Smith, Graham es_ES
dc.contributor.author Plisson, Christophe es_ES
dc.contributor.author Miller, Philip W. es_ES
dc.date.accessioned 2016-09-28T06:40:33Z
dc.date.available 2016-09-28T06:40:33Z
dc.date.issued 2015-05-12
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/70521
dc.description.abstract [EN] Herein a new 11C radiolabelling strategy for the fast and efficient synthesis of thioureas and related derivatives using the novel synthon, 11CS2, is reported. This approach has enabled the facile labelling of a potent progesterone receptor (PR) agonist, [11C]Tanaproget, by the intramolecular reaction of the acyclic aminohydroxyl precursor with 11CS2, which has potential applications as a positron emission tomography radioligand for cancer imaging. es_ES
dc.description.sponsorship We are grateful to the EPSRC (grant no. EP/L025140/1), The Royal Society (grant no. RG110449) and to the Imperial College-EPSRC Kick-Start programme for supporting this work.
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Carbon-11 Radiolabelling of Organosulfur Compounds: 11C Synthesis of the Progesterone Receptor Agonist Tanaproget es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201501089
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FL025140%2F1/GB/De Novo Carbon-11 Chemistry: New and Explorative Radiolabelling Strategies for PET/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Royal Society//RG110449/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Haywood, T.; Kealey, S.; Sánchez-Cabezas, S.; Hall, JJ.; Allott, L.; Smith, G.; Plisson, C.... (2015). Carbon-11 Radiolabelling of Organosulfur Compounds: 11C Synthesis of the Progesterone Receptor Agonist Tanaproget. Chemistry - A European Journal. 21(25):9034-9038. https://doi.org/10.1002/chem.201501089 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/chem.201501089 es_ES
dc.description.upvformatpinicio 9034 es_ES
dc.description.upvformatpfin 9038 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 25 es_ES
dc.relation.senia 293500 es_ES
dc.identifier.pmid 25965348
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder Royal Society, Reino Unido
dc.description.references Kelloff, G. J. (2005). Progress and Promise of FDG-PET Imaging for Cancer Patient Management and Oncologic Drug Development. Clinical Cancer Research, 11(8), 2785-2808. doi:10.1158/1078-0432.ccr-04-2626 es_ES
dc.description.references Rohren, E. M., Turkington, T. G., & Coleman, R. E. (2004). Clinical Applications of PET in Oncology. Radiology, 231(2), 305-332. doi:10.1148/radiol.2312021185 es_ES
dc.description.references Jones, T., & Rabiner, E. A. (2012). The Development, Past Achievements, and Future Directions of Brain PET. Journal of Cerebral Blood Flow & Metabolism, 32(7), 1426-1454. doi:10.1038/jcbfm.2012.20 es_ES
dc.description.references Schindler, T. H., Schelbert, H. R., Quercioli, A., & Dilsizian, V. (2010). Cardiac PET Imaging for the Detection and Monitoring of Coronary Artery Disease and Microvascular Health. JACC: Cardiovascular Imaging, 3(6), 623-640. doi:10.1016/j.jcmg.2010.04.007 es_ES
dc.description.references Miller, P. W., Long, N. J., Vilar, R., & Gee, A. D. (2008). Synthesis of11C,18F,15O, and13N Radiolabels for Positron Emission Tomography. Angewandte Chemie International Edition, 47(47), 8998-9033. doi:10.1002/anie.200800222 es_ES
dc.description.references Miller, P. W., Long, N. J., Vilar, R., & Gee, A. D. (2008). Synthese von11C-,18F-,15O- und13N-Radiotracern für die Positronenemissionstomographie. Angewandte Chemie, 120(47), 9136-9172. doi:10.1002/ange.200800222 es_ES
dc.description.references Tredwell, M., Preshlock, S. M., Taylor, N. J., Gruber, S., Huiban, M., Passchier, J., … Gouverneur, V. (2014). A General Copper-Mediated Nucleophilic18F Fluorination of Arenes. Angewandte Chemie International Edition, 53(30), 7751-7755. doi:10.1002/anie.201404436 es_ES
dc.description.references Tredwell, M., Preshlock, S. M., Taylor, N. J., Gruber, S., Huiban, M., Passchier, J., … Gouverneur, V. (2014). A General Copper-Mediated Nucleophilic18F Fluorination of Arenes. Angewandte Chemie, 126(30), 7885-7889. doi:10.1002/ange.201404436 es_ES
dc.description.references Huiban, M., Tredwell, M., Mizuta, S., Wan, Z., Zhang, X., Collier, T. L., … Passchier, J. (2013). A broadly applicable [18F]trifluoromethylation of aryl and heteroaryl iodides for PET imaging. Nature Chemistry, 5(11), 941-944. doi:10.1038/nchem.1756 es_ES
dc.description.references Lee, E., Hooker, J. M., & Ritter, T. (2012). Nickel-Mediated Oxidative Fluorination for PET with Aqueous [18F] Fluoride. Journal of the American Chemical Society, 134(42), 17456-17458. doi:10.1021/ja3084797 es_ES
dc.description.references Lee, E., Kamlet, A. S., Powers, D. C., Neumann, C. N., Boursalian, G. B., Furuya, T., … Ritter, T. (2011). A Fluoride-Derived Electrophilic Late-Stage Fluorination Reagent for PET Imaging. Science, 334(6056), 639-642. doi:10.1126/science.1212625 es_ES
dc.description.references Graham, T. J. A., Lambert, R. F., Ploessl, K., Kung, H. F., & Doyle, A. G. (2014). Enantioselective Radiosynthesis of Positron Emission Tomography (PET) Tracers Containing [18F]Fluorohydrins. Journal of the American Chemical Society, 136(14), 5291-5294. doi:10.1021/ja5025645 es_ES
dc.description.references Schirrmacher, R., Bradtmöller, G., Schirrmacher, E., Thews, O., Tillmanns, J., Siessmeier, T., … Jurkschat, K. (2006). 18F-Labeling of Peptides by means of an Organosilicon-Based Fluoride Acceptor. Angewandte Chemie International Edition, 45(36), 6047-6050. doi:10.1002/anie.200600795 es_ES
dc.description.references Schirrmacher, R., Bradtmöller, G., Schirrmacher, E., Thews, O., Tillmanns, J., Siessmeier, T., … Jurkschat, K. (2006). 18F-Markierung von Peptiden mithilfe eines Organosilicium-Fluoridacceptors. Angewandte Chemie, 118(36), 6193-6197. doi:10.1002/ange.200600795 es_ES
dc.description.references Wängler, C., Niedermoser, S., Chin, J., Orchowski, K., Schirrmacher, E., Jurkschat, K., … Wängler, B. (2012). One-step 18F-labeling of peptides for positron emission tomography imaging using the SiFA methodology. Nature Protocols, 7(11), 1946-1955. doi:10.1038/nprot.2012.109 es_ES
dc.description.references Marik, J., & Sutcliffe, J. L. (2006). Click for PET: rapid preparation of [18F]fluoropeptides using CuI catalyzed 1,3-dipolar cycloaddition. Tetrahedron Letters, 47(37), 6681-6684. doi:10.1016/j.tetlet.2006.06.176 es_ES
dc.description.references Glaser, M., & Årstad, E. (2007). «Click Labeling» with 2-[18F]Fluoroethylazide for Positron Emission Tomography. Bioconjugate Chemistry, 18(3), 989-993. doi:10.1021/bc060301j es_ES
dc.description.references Deng, H., Cobb, S. L., Gee, A. D., Lockhart, A., Martarello, L., McGlinchey, R. P., … Onega, M. (2006). Fluorinase mediated C–18F bond formation, an enzymatic tool for PET labelling. Chemical Communications, (6), 652. doi:10.1039/b516861a es_ES
dc.description.references Thompson, S., Zhang, Q., Onega, M., McMahon, S., Fleming, I., Ashworth, S., … O’Hagan, D. (2014). A Localized Tolerance in the Substrate Specificity of the Fluorinase Enzyme enables «Last-Step»18F Fluorination of a RGD Peptide under Ambient Aqueous Conditions. Angewandte Chemie International Edition, 53(34), 8913-8918. doi:10.1002/anie.201403345 es_ES
dc.description.references Thompson, S., Zhang, Q., Onega, M., McMahon, S., Fleming, I., Ashworth, S., … O’Hagan, D. (2014). A Localized Tolerance in the Substrate Specificity of the Fluorinase Enzyme enables «Last-Step»18F Fluorination of a RGD Peptide under Ambient Aqueous Conditions. Angewandte Chemie, 126(34), 9059-9064. doi:10.1002/ange.201403345 es_ES
dc.description.references Jewett, D. M. (1992). A simple synthesis of [11C]methyl triflate. International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, 43(11), 1383-1385. doi:10.1016/0883-2889(92)90012-4 es_ES
dc.description.references Roeda, D., & Dolle, F. (2010). [11C]Phosgene: A Versatile Reagent for Radioactive Carbonyl Insertion Into Medicinal Radiotracers for Positron Emission Tomography. Current Topics in Medicinal Chemistry, 10(16), 1680-1700. doi:10.2174/156802610793176710 es_ES
dc.description.references Wilson, A. A., Hicks, J. W., Sadovski, O., Parkes, J., Tong, J., Houle, S., … Vasdev, N. (2012). Radiosynthesis and Evaluation of [11C-Carbonyl]-Labeled Carbamates as Fatty Acid Amide Hydrolase Radiotracers for Positron Emission Tomography. Journal of Medicinal Chemistry, 56(1), 201-209. doi:10.1021/jm301492y es_ES
dc.description.references Wilson, A. A., Garcia, A., Houle, S., & Vasdev, N. (2010). Direct fixation of [11C]-CO2by amines: formation of [11C-carbonyl]-methylcarbamates. Org. Biomol. Chem., 8(2), 428-432. doi:10.1039/b916419g es_ES
dc.description.references Hooker, J. M., Reibel, A. T., Hill, S. M., Schueller, M. J., & Fowler, J. S. (2009). One-Pot, Direct Incorporation of [11C]CO2into Carbamates. Angewandte Chemie International Edition, 48(19), 3482-3485. doi:10.1002/anie.200900112 es_ES
dc.description.references Hooker, J. M., Reibel, A. T., Hill, S. M., Schueller, M. J., & Fowler, J. S. (2009). One-Pot, Direct Incorporation of [11C]CO2into Carbamates. Angewandte Chemie, 121(19), 3534-3537. doi:10.1002/ange.200900112 es_ES
dc.description.references Iwata, R., Ido, T., Takahashi, T., Nakanishi, H., & Iida, S. (1987). Optimization of [11C]HCN production and no-carrier-added [1-11C]amino acid synthesis. International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, 38(2), 97-102. doi:10.1016/0883-2889(87)90003-7 es_ES
dc.description.references Hooker, J. M., Schönberger, M., Schieferstein, H., & Fowler, J. S. (2008). A Simple, Rapid Method for the Preparation of [11C]Formaldehyde. Angewandte Chemie International Edition, 47(32), 5989-5992. doi:10.1002/anie.200800991 es_ES
dc.description.references Hooker, J. M., Schönberger, M., Schieferstein, H., & Fowler, J. S. (2008). Eine einfache und schnelle Methode zur Herstellung von [11C]Formaldehyd. Angewandte Chemie, 120(32), 6078-6081. doi:10.1002/ange.200800991 es_ES
dc.description.references Långström, B., Itsenko, O., & Rahman, O. (2007). [11C]Carbon monoxide, a versatile and useful precursor in labelling chemistry for PET-ligand development. Journal of Labelled Compounds and Radiopharmaceuticals, 50(9-10), 794-810. doi:10.1002/jlcr.1446 es_ES
dc.description.references Kealey, S., Gee, A., & Miller, P. W. (2014). Transition metal mediated [11C]carbonylation reactions: recent advances and applications. Journal of Labelled Compounds and Radiopharmaceuticals, 57(4), 195-201. doi:10.1002/jlcr.3150 es_ES
dc.description.references Miller, P. W., & Bender, D. (2011). [11C]Carbon Disulfide: A Versatile Reagent for PET Radiolabelling. Chemistry - A European Journal, 18(2), 433-436. doi:10.1002/chem.201103128 es_ES
dc.description.references Bell, F. W., Cantrell, A. S., Hoegberg, M., Jaskunas, S. R., Johansson, N. G., Jordan, C. L., … Morin, J. M. (1995). Phenethylthiazolethiourea (PETT) Compounds, a New Class of HIV-1 Reverse Transcriptase Inhibitors. 1. Synthesis and Basic Structure-Activity Relationship Studies of PETT Analogs. Journal of Medicinal Chemistry, 38(25), 4929-4936. doi:10.1021/jm00025a010 es_ES
dc.description.references Kappe, C. O. (2000). Highly versatile solid phase synthesis of biofunctional 4-aryl-3,4-dihydropyrimidines using resin-bound isothiourea building blocks and multidirectional resin cleavage. Bioorganic & Medicinal Chemistry Letters, 10(1), 49-51. doi:10.1016/s0960-894x(99)00572-7 es_ES
dc.description.references Muccioli, G. G., Poupaert, J. H., Wouters, J., Norberg, B., Poppitz, W., Scriba, G. K. ., & Lambert, D. M. (2003). A rapid and efficient microwave-assisted synthesis of hydantoins and thiohydantoins. Tetrahedron, 59(8), 1301-1307. doi:10.1016/s0040-4020(03)00033-4 es_ES
dc.description.references Lim, H. D., Smits, R. A., Bakker, R. A., van Dam, C. M. E., de Esch, I. J. P., & Leurs, R. (2006). Discovery ofS-(2-Guanidylethyl)-isothiourea (VUF 8430) as a Potent Nonimidazole Histamine H4Receptor Agonist. Journal of Medicinal Chemistry, 49(23), 6650-6651. doi:10.1021/jm060880d es_ES
dc.description.references Istyastono, E. P., Nijmeijer, S., Lim, H. D., van de Stolpe, A., Roumen, L., Kooistra, A. J., … de Graaf, C. (2011). Molecular Determinants of Ligand Binding Modes in the Histamine H4Receptor: Linking Ligand-Based Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR) Models to in Silico Guided Receptor Mutagenesis Studies. Journal of Medicinal Chemistry, 54(23), 8136-8147. doi:10.1021/jm201042n es_ES
dc.description.references Hossaini, Z., Rostami-Charati, F., Moghadam, M. E., & Moghaddasi-Kochaksaraee, F. (2014). Expeditious solvent-free synthesis of 1,3-thiazolanes via multicomponent reactions. Chinese Chemical Letters, 25(5), 794-796. doi:10.1016/j.cclet.2014.02.002 es_ES
dc.description.references Du, W., & Curran, D. P. (2003). Synthesis of Carbocyclic and Heterocyclic Fused Quinolines by Cascade Radical Annulations of UnsaturatedN-Aryl Thiocarbamates, Thioamides, and Thioureas. Organic Letters, 5(10), 1765-1768. doi:10.1021/ol0344319 es_ES
dc.description.references Griffin, T. S., Woods, T. S., & Klayman, D. L. (1975). Thioureas in the Synthesis of Heterocycles. Advances in Heterocyclic Chemistry, 99-158. doi:10.1016/s0065-2725(08)60129-4 es_ES
dc.description.references Zhang, J., McCarthy, T. J., Moore, W. M., Currie, M. G., & Welch, M. J. (1996). Synthesis and Evaluation of Two Positron-Labeled Nitric Oxide Synthase Inhibitors,S-[11C]Methylisothiourea andS-(2-[18F]Fluoroethyl)isothiourea, as Potential Positron Emission Tomography Tracers1. Journal of Medicinal Chemistry, 39(26), 5110-5118. doi:10.1021/jm960481q es_ES
dc.description.references Katritzky, A. R., Ledoux, S., Witek, R. M., & Nair, S. K. (2004). 1-(Alkyl/Arylthiocarbamoyl)benzotriazoles as Stable Isothiocyanate Equivalents:  Synthesis of Di- and Trisubstituted Thioureas. The Journal of Organic Chemistry, 69(9), 2976-2982. doi:10.1021/jo035680d es_ES
dc.description.references SHARMA, S. (1978). Thiophosgene in Organic Synthesis. Synthesis, 1978(11), 803-820. doi:10.1055/s-1978-24896 es_ES
dc.description.references Maddani, M. R., & Prabhu, K. R. (2010). A Concise Synthesis of Substituted Thiourea Derivatives in Aqueous Medium. The Journal of Organic Chemistry, 75(7), 2327-2332. doi:10.1021/jo1001593 es_ES
dc.description.references Ballabeni, M., Ballini, R., Bigi, F., Maggi, R., Parrini, M., Predieri, G., & Sartori, G. (1999). Synthesis of SymmetricalN,N‘-Disubstituted Thioureas and Heterocyclic Thiones from Amines and CS2over a ZnO/Al2O3Composite as Heterogeneous and Reusable Catalyst. The Journal of Organic Chemistry, 64(3), 1029-1032. doi:10.1021/jo981629b es_ES
dc.description.references Fensome, A., Bender, R., Chopra, R., Cohen, J., Collins, M. A., Hudak, V., … Wrobel, J. (2005). Synthesis and Structure−Activity Relationship of Novel 6-Aryl-1,4- dihydrobenzo[d][1,3]oxazine-2-thiones as Progesterone Receptor Modulators Leading to the Potent and Selective Nonsteroidal Progesterone Receptor Agonist Tanaproget#. Journal of Medicinal Chemistry, 48(16), 5092-5095. doi:10.1021/jm050358b es_ES
dc.description.references Zhang, P., Terefenko, E. A., Fensome, A., Wrobel, J., Winneker, R., & Zhang, Z. (2003). Novel 6-aryl-1,4-dihydrobenzo[d]oxazine-2-thiones as potent, selective, and orally active nonsteroidal progesterone receptor agonists. Bioorganic & Medicinal Chemistry Letters, 13(7), 1313-1316. doi:10.1016/s0960-894x(03)00128-8 es_ES
dc.description.references Zhang, Z., Olland, A. M., Zhu, Y., Cohen, J., Berrodin, T., Chippari, S., … Winneker, R. C. (2005). Molecular and Pharmacological Properties of a Potent and Selective Novel Nonsteroidal Progesterone Receptor Agonist Tanaproget. Journal of Biological Chemistry, 280(31), 28468-28475. doi:10.1074/jbc.m504144200 es_ES
dc.description.references Bapst, J. L., Ermer, J. C., Ferron, G. M., Foss, D., & Orczyk, G. P. (2006). Pharmacokinetics and safety of tanaproget, a nonsteroidal progesterone receptor agonist, in healthy women. Contraception, 74(5), 414-418. doi:10.1016/j.contraception.2006.06.004 es_ES
dc.description.references Lee, J. H., Zhou, H., Dence, C. S., Carlson, K. E., Welch, M. J., & Katzenellenbogen, J. A. (2010). Development of [F-18]Fluorine-Substituted Tanaproget as a Progesterone Receptor Imaging Agent for Positron Emission Tomography. Bioconjugate Chemistry, 21(6), 1096-1104. doi:10.1021/bc1001054 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem